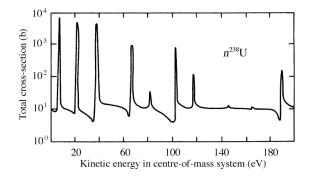
Subatomic Physics I: exam (exercises)

July 2, 2020

Note: book and theory lecture slides are allowed.

Info:	masses	and	quark	content	of	some	hadrons
-------	--------	-----	-------	---------	----	------	---------

Symbol	quark content	mass (MeV/c^2)	
Ξ^-	(dss)	1322	
Ξ^0	(uss)	1314	
Λ^0	(uds)	1116	
Σ^{-}	(dds)	1197	
Σ^0	(uds)	1193	
π^{-}	$(dar{u})$	140	
π^+	$(uar{d})$	140	
π^0	$(uar{u}/dar{d})$	135	
K^+	$(uar{s})$	494	
K^{-}	$(sar{u})$	494	
K^0	$(dar{s})$	498	
Δ^{++}	(uud)	1232	
J/Ψ	$(c\bar{c})$	3097	
D_s^-	(sar c)	1968	
B^0	$(dar{b})$	5280	
Ω^{-}	(sss)	1672	


Exercise 1: Collision kinematics (2p)

Question: Particle A with an energy E_A collides into a stationary particle B, and as a result of this collision, several particles $C_1, C_2, ..., C_n$. are produced (i.e. $A+B \rightarrow C_1+C_2+...+C_n$).

- (a) Calculate the minimum energy of particle A in the lab frame for this reaction to take place, as a function of the involved particle masses (i.e. $m_A, m_B, m_{C_1}, ..., m_{C_n}$).
- (b) Using this result, calculate the minimum pion energy required for the reaction $\pi^- + p \rightarrow K^0 + \Sigma^0$ (where the proton is initially at rest).

Exercise 2: Neutron-uranium reaction (2.5p)

Question: The total cross-section data for the reaction between a neutron and a ^{238}U -nucleus is shown below:

There is a resonance R at the neutron kinetic energy (in the center-of-mass frame) of $E_n = 10$ eV with a width of 10^{-2} eV. The peak cross-section for this resonance production is $\sigma = 9 \times 10^3$ barn (as can be seen in the figure as well). Use this information to find the partial widths Γ_n and Γ_{γ} , relevant for the decay channels $R \to n + {}^{238}U$ and $R \to \gamma + {}^{239}U$ respectively. Assume there are no other decay channels. The spin of ${}^{238}U$ (in the ground state) is 0. while the spin of the R resonance is measured to be 1/2.

Exercise 3: Lambda decay rate (2p)

Question: Draw a feynman diagram at the quark level for the decay $\Lambda^0 \to p + \pi^-$. If nature were to double the weak coupling constant and decrease the mass of the *W*-boson by a factor of four, what would be the effect on the decay rate $\Gamma(\Lambda^0 \to p + \pi^-)$? You can neglect the momentum transferred by the *W*-boson in the process with respect to its (on-shell) rest mass. The quark content of the Λ^0 is *uds*.

Exercise 4: The shell model (1.5p)

Question: What is the shell-model configuration of the nucleus ${}^{7}_{3}$ Li? What are its spin, parity and magnetic moment (in units of nuclear magnetons)? Give the two most likely configurations for the first excited state.

Exercise 5: Spin-orbit potential (2p)

Question: From experiments with lead and thallium, the following table of nuclear states with their spin properties and excitation energies could be derived:

Nucleus	J^P	E_X (MeV)		
$^{207}_{82}{ m Pb}$	$\begin{vmatrix} 1/2^- \\ 5/2^- \\ 3/2^- \\ 7/2^- \end{vmatrix}$	$0 \\ 0.5696 \\ 0.8977 \\ 2.340$		
$^{207}_{81}{ m Tl}$	$\left \begin{array}{c} 1/2^+ \\ 3/2^+ \\ 5/2^+ \end{array}\right.$	$0 \\ 0.35 \\ 1.67$		

With this data, derive three estimates for the magnitude and sign of the expectation value of the spin-orbit potential $\langle V_{ls}(r) \rangle$ in the nuclear potential and compare the results. What can you conclude about the shell model?