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0 Introduction

We saw in the inflation notes that slow-roll inflation gives rise to gaussian fluc-
tuations. We first discussed adiabatic density perturbations, these are scalar
modes which are generated when they’re super-horizon (super-Hubble) by a
single time-shifting function. And as long as they’re super-Hubble they satisfy

δ = δb =
3

4
δν =

3

4
δγ (1)

Where

δx =
δρx

ρ
(0)
x

(2)

(no index means dark matter)
Now for super-Hubble scales during

• radiation domination we saw that the gravitational potential was given by
Ψ = − 1

2δγ = const

• matter domination: Ψ = − 1
2δ = const

These perturbations were characterized by a power spectrum k3PΨ(k) ∼ kn−1,
with n the tilt/spectral index/slope and n− 1 = −4ϵ− 2δ.
The second type of gaussian fluctuations correspond to gravitational waves (ten-
sor modes), their spectrum is given by k3Ph(k) ∼ knT with nT = −2ϵ. These set
the initial conditions for further cosmological evolution. The best know CMB
observable is probably the power spectrum shown in figure 1 With the y-axis
l(l + 1)Cl and the goal of this lecture is to understand the physics behind this.

1 Photon scattering

An important ingredient to discuss in this story is photon scattering, we have
photons which interact with electrons via thomson scattering, which in turn in-
teract with baryons via Coulomb scattering. Coulomb scattering is alway very
efficient =⇒ electrons and baryons couple greatly to eachother. For Thom-
son scattering the story is a little different, to see wether Thomson scattering
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Figure 1: CMB power spectrum

manages to keep photons and electrons in equilibrium we’ll have to look at the
thomson scattering rate (w.r.t conformal time):

Γ = σTane (3)

Now if we look at the behaviour of the thomson scattering rate as a function
of redshift we see 2 important times: recombination/decoupling at z=1080 and
reionization at z ≈ 10: Thomson scattering is way less efficient if they’re bound

to hydrogen and at reionization the universe was too diluted.

Another important concept here is the optical depth

τ(η) ≡
∫ η0

η

dη̃Γ(η̃) (4)

It can be interpreted as the opacity at a time η when seen from today (η = η0).
And it corresponds to the expected number of scatterings of a photons since the
time η. So one expects that τ → ∞ as η → 0. τ ≈ 0.1 between recombination
and reionization and τ = 0 today.
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The next important concept is the visibility function:

g(η) = −τ̇ e−τ (5)

And corresponds to the probability density that a CMB photon seen today
experienced last scattering at time η, we expect it to look like this: The final

important concept is the Diffusion length

λd = ard (6)

Where rd is the comoving distance, now the comoving mean free path of photons
is rmfp = 1

Γ(η) in natural units. And if we use that in the formula for a random

walk we get:

rd(η) ∼
[∫ η

0

dη̃Γr2mfp

]1/2
(7)

=

[∫ η

0

dη̃
1

Γ(η̃)

]1/2
(8)

This is an important concept to us as we’ll see that the photon diffusion that
happens just before recombination will damp the small scale anisotropies in the
cosmic microwave background.

2 Boltzmann equation for photons

When photons are no longer in equilibrium we need the Boltzmann equation
to describe their evolution, first let’s expand the photon distribution function
about it’s equilibrium value (Bose-Einstein):

f(η, x⃗, p⃗) =

[
exp

{
p

τ(η)[1 + Θ(η, x⃗, p)]

}
− 1

]−1

(9)

At early times the photons where in local thermal equilibrium with the elec-
trons, that implies that the temperature fluctuation Θ doesn’t depend on the
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momentum of the photon but only on the position x: Θ(η, x⃗). After decoupling
there’s no longer local thermal equilibrium but one can show that the geodesic
equation implies that the Bose-Einstein equation is perserved except that the
temperature now depends on the propagation direction: Θ(η, x⃗, p̂).
Boltzmann eq:

df

dη
= C[f, fe] (10)

C being a collision term due to Thomson scattering, this equation can be written
in the following form:

Θ̇ + p̂ · ∇⃗Θ+ Φ̇ + p̂ · ∇⃗Ψ = −Γ(Θ−Θ0 − p̂ · V⃗e) (11)

Here Φ and Ψ are the scalar gravitational potentials, V⃗e is the bulk velocity of
the electrons (which is the same as the bulk velocity of the baryons) and Θ0 is
the average over angles of Θ (Θ0 ≡ 1

4π

∫
dΩ′Θ(η, x⃗, p̂)).

Now at early times the compton scattering rate Γ is huge, and because of the
product on the right hand side the part between brackets is driven to zero, i.e

Θ = Θ0 + p̂ · V⃗b (12)

This should be compared to a perfect fluid which is determined by the energy
density and the velocity. Now we’ll make the assumption that the velocity is
irrotational, i.e the velocity is the gradient of a scalar velocity potential.
Now let’s fourrier transform the perturbation Θ → Θ̃(η, k⃗, p̂), now we make the

claim that the FT transform doesn’t depend on k⃗ and p̂ seperately but on k⃗ and
k̂ · p̂. i.e

Θ̃(η, k⃗, k̂ · p̂) (13)

Proof:

1. Irrotational velocity =⇒ V⃗ ∥ k⃗. Looking back at equation 12, we see

that the only dependence on p̂ is on the combination p̂ · V⃗b which is the
same as Vbp̂ · k̂. So the claim holds at early times.

2. The evolution equation only depends on p̂ via the combination p̂k̂ which
is a consequency of isotropy, therefore the claim continues to hold.

Because of this we can expand Θ̃ in Legendre polynomials:

Θ̃(η, k̂, k̂ · p̂) =
∑
l

(−i)l(2l + 1)Θl(η, k⃗)Pl(k̂ · p̂) (14)

And at early times we know that we only have monopole and dipole contribu-
tions (l=0 and 1).
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3 Temperature anisotropy in a given direction

To get some intuition for temperature anisotropies in the cosmic microwave
background it’s useful to start in a given direction. Let’s consider the temper-
ature anisotropy observed today when looking in a direction p̂:

δT

T
(p̂) = Θ(η0, o⃗,−p̂) (15)

The arguments are (now, here, photon moves in direction −p̂). Now one can
integrate the Boltzmann equation along the line of sight and one can use the
approximation that recombination happens instantaneously (instantaneous de-
coupling) which means that the visibility function is given by a delta function:
g(η) = δ(η − ηdec). Which implies the following equation:

(Θ + Ψ)obs =
(
Θ0 +Ψ+ p̂ · V⃗b

) ∣∣∣∣
dec

+

∫ η0

ηdec

dη(Ψ̇− Φ̇) (16)

The Theta on the left hand side can be interpreted as δT
T (p̂) today, the sub-

script obs means at the observer location and along the line of sight, Θ0 is the
temperature perturbation at recombination, p̂ · V⃗b is a doppler correction due to
the velocity of the baryon-photon fluid along the line of sight, dec refers to the
last scattering surface along the line of sight. Then we have the gravitational
potentials Ψ on the left and right hand side (in obs and dec) and those can
be interpreted as follows: if the potentials were constant in time there would
be a gravitational redshift or blueshift which would depend on their difference
(Ψ

∣∣
obs

− Ψ
∣∣
dec

). Finally we have an integral on the right hand side which is a
non-conservative correction due to the time dependence of the potentials. The
gravitational potential Ψ on the left-hand side can be ignored in practice because
it’s a tiny isotropic correction (corresponds to a tiny shift in the temperature).
Given the last statement we can slightly re-write the equation in the following
way:

Θ|obs = (Θ0 +Ψ)
∣∣
dec

+ p̂ · V⃗b

∣∣
dec

+

∫ η0

ηdec

dη(Ψ̇− Φ̇) (17)

The first term on the right hand side is called the ”Sachs-Wolfe (SW)” term,
the second term is called the Doppler contribution and the last term is called
the ”integrated Sachs-Wolfe effect (ISW)”. It’s instructive to first study this
equation for large scales, e.g CMB maps smoothed over small scals (akin to bad
resolution), then the temperature anisotropies are dominated by the SW term.
The contributions to this SW term come from super-Hubble modes at the time
of decoupling (Doppler negligable and ISW small).
Let’s first consider Θ0

∣∣
dec

, when the photons were in equilibrium thermodynam-
ics says:

ργ ∝ T 4 =⇒ δγ =
δργ
ργ

=
4δT

T
= 4Θ0 (18)
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Where δT is averaged over all directions. Next consider Ψ
∣∣
dec

, on super-Hubble
scales for adiabatic initial conditions we know that:

δγ =
4

3
δb (19)

And for super-Hubble scales during matter domination:

−2Ψ = δtot = δb = δ (20)

(both seen in the inflation notes)
If we bring all of this together then we find that on the last scattering surface:

Θ0 +Ψ =
1

4
δγ +Ψ =

1

4
(−2)

4

3
Ψ +Ψ = −2

3
Ψ +Ψ =

1

3
Ψ (21)

If we neglect the doppler and ISW contributions, you find:

Θ
∣∣
obs, large scales

≈ 1

3
Ψ
∣∣
dec

= −1

8
δγ
∣∣
dec

(22)

Note that in the combination (Θ0 + Ψ), both terms have opposite signs and
it’s actually the gravitational potential Ψ that dominates over Θ0. This means
that if you have an overdensity on the last scattering surface (δγ > 0) then you
actually have a cold spot (rather than a hot spot) in the observed map (Θ < 0)

4 Spectrum of temperature anisotropies

Studying photons coming from a given direction is useful to get some intuition
but our theories don’t make predictions for what happens in any specific direc-
tion. In order to link theory to experiment, we need to study the spectrum of
temperature anisotropies.
First let’s expand the temperature anisotropy in spherical harmonics:

δT

T
(p̂) = Θ(η0, 0⃗,−p̂) =

∑
lm

almYlm(p̂) (23)

And using the addition theorem for spherical harmonics:

Pl(−p̂ · k̂) = 4π

2l + 1

l∑
m=−l

Ylm(p̂)Y ∗
lm(−k̂) (24)

We can write the temperature anisotropy as follows:

Θ(η0, o⃗,−p⃗) =

∫
d3k

(2π)3
Θ̃(η0, k⃗,−p̂) (25)

=

∫
d3k

(2π)3

∑
l

(−i)l(2l + 1)Θl(η0, k⃗)Pl(−p̂ · k̂) (26)

=

∫
d3k

2π2

∑
lm

(−i)lΘl(η0, k⃗)Y
∗
lm(−k̂)Ylm(p̂) (27)

6



i.e first: FT, second: Expand in Legendre polynomials and lastly we used the
addition theorem. With this we find that alm is given by:

alm = (−i)l
∫

d3

2π2
Y ∗
lm(−k̂)Θl(η0, k⃗) (28)

Let’s write Θl on the RHS in a convenient way:

Θl(Θ0, k⃗) = ζ(k⃗)× Θl(η0, k⃗)

ζ(k⃗)
(29)

With ζ defined as in the inflation notes, interestingly the ratio on the RHS is
independent of the initial conditions (as the evolution equation is linear) and

it only depends on the magnitude of k⃗ and not it’s orientation. This ratio is
called the Transfer function. And ζ(k⃗) is what we call the initial condition for
the subsequent evolution of the universe after inflation. This initial condition
is chosen during inflation from some gaussian distribution as in the inflation
notes.
We define the transfer function as Θl(η0, k) (we dropped the vector arrow). I.e

we have seperated Θl(η0, k⃗) into something probabilistic (ζ) which is determined
during inflation, chosen from some probability distribution and a transfer func-
tion which can be computed using the evolution equation.
Now we’re ready to compute the 2-point correlation function between the coëfficients:

< alma∗l′m′ > = (−i)l−l′
∫

d3k

2π2
Y ∗
lm(−k̂)Θl(η0, k) (30)

×
∫

d3k′

2π2
Yl′m′(−k̂′)Θ∗

l′(η0, k
′) (31)

× < ζ(k⃗)ζ∗(k⃗′) > (32)

Now from the isotropic gaussian distributions we discussed in the notes on
inflation we have that:

< ζ(k⃗)ζ∗(k⃗′) >= (2π)3Pζ(k)δ(k⃗ − k⃗′) (33)

filling this in we find that

< alma∗l′m′ >= δl,l′δm,m′Cl (34)

With

Cl =
2

π

∫
dkk2 |Θl(η0, k)|2 Pη(k) (35)

Where the kronicker delta’s can be traced back to homogeneity and that Cl

doesn’t depend on m can be traced back to isotropy. Now it’s very important
that the Cl’s do not depend on m, the Cl’s are the variances of a theoretical
probability distribution for the alm’s but we only have acces to one temperature
map, i.e one realisation of the probability distribution. So you might be worried
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that we don’t have enough observational input to test the theoretical prediction,
however because the Cl’s don’t depend on m, we have the same variance for all
the different m modes. So we do have some statistics to test the prediction and
especially when l is large there are many values of m that we can use in order to
test the predictions of our models. In fact the best estimate that we can come
up with for Cl is:

Cobs
l ≡ 1

2l + 1

l∑
m=−l

|aobslm |2 (36)

I.e the average of all the observed modulus squared values. And in this way we
can see that cosmic variance will be very important for small values of l which
correspond to large features on the sky.

When we were talking about anisotropies in a certain direction a starting point
was a line-of-sight integral in position space, we can now do one in momentum
space with as a result:

Θl(η0, k) ≈ [Θ0(ηdec, k) + Ψ(ηdec, k)] jl [k(η − ηdec)] (37)

+ iVbj
′
l [k(η0 − ηdec)] (38)

+

∫ η0

ηdec

dη
[
Ψ̇(η, k)− Φ̇(η, k)

]
jl [k(η0 − η)] (39)

We find 3 terms as before, again called (in order) SW, Doppler and ISW contri-
bution. As this quantity appears squared in Cl, Cl consists of 6 terms: CSW

l ,

CDoppler
l , CISW

l and the cross terms. Now for large l, the spherical bessel func-
tions jl(x) and j′l(x) are peaked near x ≈ l which implies that the SW and
Doppler contributions are dominated by

k ≈ l

η0 − ηdec
(40)

Which is an imortant relation as it implies that spatial scales at the decoupling
respond to angular scales today. We can, for instance, take this into account
for the SW contribution to Cl:

CSW
l ∼ |Θ0(ηdec, k) + Ψ(ηdec, k)|2 Pζ(k)

∣∣
k≈ l

η0−ηdec

(41)
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5 Acoustic oscillations

Before decoupling the photons and the baryons form a single fluid with sound
speed

c2s =
δpγ + δpb
δργ + δρb

(42)

Since the energy density in baryons goes like: ρb ∼ T 3 and in photons ργ ∼ T 4

we have that δγ = 4
3δb, we also know that pressure perturbations in baryons are

much smaller than in photons: |δpb| ≪ |δpγ |. Combining these equations we
get for the speed of sound:

c2s =
1

3(1 +R)
(43)

With

R ≡
3ρ

(0)
b

4ρ
(0)
γ

(∼ a) (44)

Now we’ll write down the equation of motion for the photon temperature fluc-
tuations Θ0(η, x⃗) (l=0) in this tightly coupled regime:

Θ̈0 +
Ṙ

1 +R
Θ̇0 + k2c2sΘ0 = −k2

3
Ψ− Ṙ

1 +R
Φ̇− Φ̈ (45)

Since R ∼ a =⇒ Ṙ = a
aR = aHR. The second term (LHS) is a damping term

and is stronger if there are more baryons, this is different from the diffusion
damping (unrelated) and we’ll ignore this term. The third term on the LHS
represents pressure forces which give rise to accoustic oscillations. The first term
on the RHS comes from the gravitational force and the last 2 terms correspond
to dilation effects. Now an important concept related to this equation is that of
the sound horizon:

rs(η) ≡
∫ η

0

cs(η̃)dη̃ (46)

And if we were to ignore damping and approximate R as slowly varying then
we would find as solution for the temperature perturbation:

Θ0(η) = Θ0(0) cos(krs(η)) + gravitational corrections (47)

This solution represents the ”acoustic oscillations”, it’s important to note that
the phase in the solution is fixed for all the modes by adiabatic initial condi-
tions. Which says that Θ0 = constant for kη ≪ 1 =⇒ all modes are in phase!
So these modes oscillate as a function of time but the CMB is like a snapshot
taken at the time of decoupling, so what are the most important modes for the
CMB? Those would be the modes who’re extremal at the time of decoupling
ηdec: Peaks at krs(ηdec) = nπ =⇒ peaks on corresponding angular scales
in CMB power spectrum. The relation between spatial and angular scales de-
pends on the spatial curvature of the universe! (look at the angle in the image
below) So if we know the spatial size of some feature on the last scattering
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surface you could use this relation to measure the curvature of the universe.
And we could infer the spatial curvature from the location of the first peak in
the power spectrum. So far we ignored the gravitational potential so let’s now
see what changes when we re-include Ψ: We see from the equation (45) that
it shifts the zero point of the oscillations by looking at the equilibrium point
(Θ̈ = Θ̇ = 0 =⇒ Θeq

0 = − 1
3c2s

Ψ = −(1 + R)Ψ), i.e it enhances the odd over

the even peaks: We also see that the effect is stronger when the speed of sound

is smaller, i.e when we have a high baryon fraction.So this is an effect that we
can use to measure baryons in the universe! So for instance we can infer the
amount of baryons from the height difference of the second to the first peak.

The next interesting effect has to do with the decay of gravitational potentials
which can give rise to a strong driving force, to see that look at the following
analogy where the photon-baryon fluid is modeled by balls in a harmonic po-
tential connected by a spring:

If in the compression phase the potential was stronger than in the subsequent de-
compression it’s clear that on the way back the balls will overshoot and thereby
cause oscillations of larger amplitudes. This happens for modes which enter the
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horizon during radiation domination, when the gravitational potentials decay
inside the horizon.
If there’s more dark matter then radiation domination stopped earlier =⇒ less
driving force =⇒ lower peaks. I.e we can measure the amount of dark matter
in the universe! To disentangle this from the previous ones we need to measure
at least 3 peaks.

Now let’s discuss diffusion damping: It turns out that the diffusion of photons
just before decoupling leads to a surpression of the form

exp

{
− l2

l2D

}
(48)

for small angle anisotropies where lD is related to the diffusion length, i.e damp-
ing of high peaks in CMB power spectrum. Now because this effect is related
to the diffusion lenght which is related to the number of baryons, this effect
can be used to independently measure the number of baryons in the universe!
(consistency check)

Let’s now say something about the ISW contributions, as they involve deriva-
tives of the gravitational potentials, the contributions will come from regions
in (k, η) space where metric fluctuations will vary in time. There are 2 such
regions:

• Shortly after decoupling, on sub-soundhorizon scales (Early ISW effect)
→ increase first peak

• During Λ domination (cosmological constant) (Late ISW effect) → in-
crease lowest multipoles

So more dark matter =⇒ less radiation left after decoupling → metric fluctu-
ations decay less =⇒ EISW contributes less =⇒ lower first peak. So we can
again measure the amount of dark matter with this.

Now let’s discuss Reionization:
Reionization leads to re-scattering of photons at small redshift which tends to
smooth out anisotropies (z ≈ 10). It does so except on the largest scales =⇒
decrease of Cl for l ≥ 40.

6 Polarization

So far we’ve only talked about temperature anisotropies which have to do with
the energy carried by light but light also has polarization. Say we have a ”cold”
and a ”hot” light source there will be a net polarization: So we see that polariza-
tion is due to Thomson scattering in the presence of a quadrupole. Polarization

11



can be represented by sticks of different size and orientation in different points of
a map of the sky, those are related to the size and orientation of the quadrupole
at each point on the last scattering surface.
These polarization modes can be decomposed in E&B modes (As seen in electro-
magnetism), importantly scalar perturbations only produce E modes, whereas
tensor perturbations produce both. So instead of just the temperature power
spectrum CTT

l which we discussed so far, there’s also a power spectrum of the E
mode polarization CEE

l , a cross correlation CTE
l and a pure CBB

l mode which
hasn’t been measured jet. As polarization is only produced by scattering there
are 2 relevant periods:

• recombination which affects small scales (in fact diffusion scale peaks at
l ≈ 1000) (at ∼ 10−6K (which is a factor of 10 less than the temperature
perturbations))

• reionization which affects large scales (at ∼ 10−7K)

Because of this last item, by measuring polarization on those large scales one
can infer information about reionization. In particular one can use this to
measure the optical depth to recombination τreio. What about Tensor modes?
(primordial gravitational waves) On the one hand they would contribute to the
temperature cpower spectrum CTT

l for l ≤ 100 as gravitational waves decay
quickly inside the hubble radius, so cosmic variance will be relatively important
which prevents studying them in detail. Second tensor effect is on CBB

l which
remains a big challenge!

7 Cosmological parameters

ΛCDM has a number of free parameters:
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• curvature density Ωk ≡ 1− Ωm − ΩΛ

• baryon density Ωbh
2

• matter density Ωmh2

• Cosmological constant energy density ΩΛ

• normalization C10

• primordial tilt/slope n

• optical depth to recombination

• tensor modes r ≡ CT
2

CS
2

(”tensor-to-scalar ratio”)

The tilt/slope is now: n < 1 with high significance (i.e not scale-invariant).
Often in cosmology the parameters are degenerate (we can’t really measure
a single parameter) e.g the tilt is degenerate with depth to recombination so
it’s important to break this degeneracy. One way of breaking it is by using
polarization data.1

1This document comes with absolutely no warranty ;) , i.e maybe also fact-check this to
the lessons and edit it if needed be. The source code for this document can be found here
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