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1 one-dimensional topological insulators

Consider an infinitely long, one-dimensional lattice with four fermionic modes per unit
cell, with the following Hamiltonian:

Ĥ = ∑
n∈Z
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where the parameters t1, t2 and t3 can be assumed real and nonnegative. The following
figure depicts the geometry of this model.

1. Consider the three extreme cases where only one of the three parameters t1, t2 or
t3 is nonzero. Can you schematically describe the structure of the ground state in
those three cases?

2. Now transform to momentum space via

an =
! +π

−π
A(k)e+ikn dk (2)

and similarly for bn, cn, dn and their adjoints, and write the Hamiltonian as
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using some 4 × 4 matrix h(k).
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3. This Hamiltonian possesses a chiral or sublattice symmetry UC such that UCh(k)U†
C =

−h(k), with UC = U†
C = U−1

C . Can you find a choice of UC? By suitably reorder-
ing the modes, you should be able to bring UC into the standard form UC =

diag(
!
1 1 −1 −1

"
) and

h(k) =

)
0 q(k)†

q(k) 0

*
. (4)

4. It is not straightforward to analytically compute the spectrum of h(k) for arbitrary
values of the parameters. The eigenvalues of h(k) correspond to the singular values
of q(k). Hence, h(k) will have eigenvalues zero (for some k) if det(q(k)) = 0 (for
some k). When det(q(k)) ∕= 0 for all k ∈ [−π,+π), the complex phase of det(q(k))
determines a winding number that is a topological invariant of this system. Setting
α = t1/t2 and β = t3/t2, determine the regions in (α, β) ∈ [0,+∞)×2 (the upper
right quadrant) where det(q(k)) can become zero for some k. The complement
thereof are the regions where Ĥ is gapped (in the bulk) and the winding number
is well defined. Determine this winding number. Can you relate its value to edge
modes that would exist in a finite system, for example in the extreme limits from
question 1?
Hint: make some plots of det(q(k)) as parametric curve in the complex plane for
different values of β and for α = 0, α = 1/2, α = 1 and α = 2 to get some intuition
and to see the winding number emerge.

5. Consider now the alternative Hamiltonian

Ĥ = ∑
n∈Z
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For the value t1 = 0, is it possible to connect the ground state at t4/t2 = 0 to that
at t4/t2 = +∞ without crossing a phase transition? What happens to the edge
modes in the case of a finite system?
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Consider an infinitely long, one-dimensional lattice of qubits or spin-1/2 particles, with
a Hamiltonian given by

Ĥ(g) = − ∑
n∈Z

σx
n−1σz

nσx
n+1 − g ∑

n∈Z

σz
n (6)

1. We first consider the Hamiltonian with g = 0, i.e. only the first type of terms. Note
that these individual terms are mutually commuting. Nonetheless, the ground
state is not entirely trivial. To construct the ground state, we will first block every
two sites together into a single unit cell, i.e. unit cell n consists of sites 2n and
2n + 1. It is then useful to explicitly write the terms in the Hamiltonian as

Ĥ(0) = −J1 ∑
n∈Z

(12n−2 ⊗ σx
2n−1)⊗ (σz

2n ⊗ σx
2n+1) + (σx

2n ⊗ σz
2n+1)⊗ (σx

2n+2 ⊗ 12n+3).

(7)
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Now consider the unitary transformation U of two qubits given by the matrix

u =
1√
2

#

$$$$%

1 0 0 1

0 1 1 0

1 0 0 −1

0 1 −1 0

&

''''(
(8)

Show that the following equalities hold:

u†(σz ⊗ σx)u = (σx ⊗ 1), u†(σx ⊗ σz)u = (1 ⊗ σz), (9)

u†(σx ⊗ 1)u = (σz ⊗ 1), u†(1 ⊗ σx)u = (1 ⊗ σx). (10)

2. If we now apply u from Eq. (8) to every unit cell and thus set U =
"

n∈Z un,
it follows directly from the identities in Eq. (8) that the Hamiltonian in Eq. (7)
transforms into

U†Ĥ(0)U = −J1 ∑
n∈Z

(12n−2 ⊗σx
2n−1)⊗ (σx

2n ⊗ 12n+1)+ (12n ⊗σz
2n+1)⊗ (σz

2n+2 ⊗ 12n+3).

(11)
Observing that |00〉+ |11〉 is the unique ground state of −(σx ⊗ σx + σz ⊗ σz), it
should now be possible to combine these observations to write the ground state of
the Hamiltonian U†ĤU, and thus also of Ĥ, as a matrix product state. Every MPS
tensor is associated to a unit cell, and thus there are 4 matrices A00, A10, A01 and
A11 that need to be determined.

3. Still considering Ĥ on the two-site unit cell, we can observe that it has two inde-
pendent (commuting) Z2 symmetries, namely

Z1 =
#

n∈Z

(σz
2n ⊗ 12n+1), Z2 =

#

n∈Z

(12n ⊗ σz
2n+1). (12)

The ground state is unique and thus symmetric under this Z2 × Z2 symmetry
group. Find the gauge transforms associated with those symmetries acting on the
virtual level of the MPS. Is this a linear or a (nontrivial) projective representation
of Z2 × Z2?

4. Now consider the Hamiltonian with nonzero values of g. Does it still has Z1 and
Z2 as symmetry? What is the ground state in the limit g → ∞? Do you expect a
phase transition for some value of g? Why?

5. For this question, it is easier to temporarily conjugate the Hamiltonian with V =

"
n∈Z vn with v = 1√

2

)
1 1

1 −1

*
the Hadamard gate, which has the effect of inter-

changing σx ↔ σz, i.e. v = v† = v−1 and vσxv = σz. We thus have

Ĥ′(g) = VĤ(g)V† = − ∑
n∈Z

σz
n−1σx

n σz
n+1 − g ∑

n∈Z

σx
n (13)

Now consider the two-site unitary transformation

wn,n+1 =

#

$$$$%

1 0 0 0
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0 0 1 0

0 0 0 −1

&

''''(
. (14)
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Because w is diagonal, it commutes with any product of σz operators, as well
as with other w transformations acting on different sites, i.e. [wn,n+1, wm,m+1] =

0 for all n, m ∈ Z. As such, the product W = ∏n wn,n+1 of all w operators is
well defined and independent on a chosen order. Show that conjugation with W
has the effect of interchanging the two types of terms in Ĥ′(g) from Eq. (13), i.e.
W†Ĥ′(g)W = gĤ′(1/g). What does this tell you about the position of a possible
phase transition?

6. The Hamiltonian Ĥ can be diagonalised exactly using the Jordan-Wigner, Fourier
and Bogoliubov transforms from the lecture notes. Use these to compute the dis-
persion relation of this Hamiltonian, and to verify that indeed the gap closes at the
value found in the previous question.

7. Now consider a different mapping of the Pauli operators, which is given by

σz
2n = τz

2n, σx
2n = ∏

m≤n
τz

2m−1τx
2n, (15)

σz
2n+1 = τz

2n+1, σx
2n+1 = τx

2n+1 ∏
m>n

τz
2m. (16)

Show that this mapping respects the Pauli algebra [σx
m, σz

n] = 0 for all m ∕= n,
[σz

m, σz
n] = 0 and [σx

m, σx
n ] = 0 for all m, n ∈ Z, and {σx

n , σz
n} = 0 for all n ∈ Z.

Show that, by inserting this transformation in Ĥ(g), the Hamiltonian in terms of
the τ variables becomes that of two decoupled quantum Ising models with trans-
verse magnetic field. Is this compatible with the position and nature of the phase
transition you have found? What happens with the ground state degeneracy?


