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1 Numerical Limitations

1.1 Basic concepts

Absolute Error = 

Relative Error = 

relative error of about   correct significant digits (the leading nonzero digit and all
following digits).

Precision: the number of digits with which a number is expressed.

Accuracy: the number of correct significant digits in an approximation of the desired quantity.

Truncation error: The difference between the true result and the result given by an algorithm
using exact arithmetic. It is due to approximations such as truncating an infinite series or
replacing derivatives by finite differences...

Error in the algorithm ITSELF.

Rounding error: The difference between the result produced by a given algorithm using exact
arithmetic and the same algorithm, using finite-precision, rounded arithmetic.

Error due to FLOATING POINT ROUNDING.

1.2 Floating-point number systems

 

where  and  are integers such that  and .

symbol   name

Base or radix

Precision

Exponent range

A floating-point system is normalized if the leading digit  always equals 1 (unless the number
represented is zero).

This is advantageous because

Each number has a unique representation.
No digits are wasted on leading zeros, thereby maximizing precision.
In a binary system ( ), the leading bit is always 1, and thus need not be stored,
thereby gaining an additional bit of precision.

approximate value − true value
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1.3 Properties

A floating-point number is finite and discrete. The number of normalized floating-point
numbers in a given system is 

 choices of sign
 choices for the leading digit of the mantissa (can't be zero, otherwise leading zero)

 because there are  choices for the remaining  digits of the mantissa
 possible values for the exponent

 because the numbr could be zero

The smallest positive normalized number (the underflow level) equals 

The largest number (the overflow level) equals 

Floating-point numbers are not uniformly distributed throughout their range, but are equally
spaced only between successive powers of .

1.4 Good practices

Cancellation

Avoid subtracting two almost identical numbers

Addition

Avoid adding small and large numbers
Perform a sequence of additions ordered from the smallest number to the largest

1.5 Summary

Basic concepts

Absolute error, relative error, precision, accuracy, truncation error, rounding error

Floating point numbers 
The system is representable by

a base or radix (often 2)
a precision
a exponent range 
A number in a system than has
a mantissa, sequence of numbers
an exponent in the exponent range
sometimes, extra sign bit
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Good practices

cancellation
avoid substracting two almost identical numbers.

addition
avoid adding small and large numbers
perform a sequence of additions ordered from the smallest number to the
largest



2 Linear Systems

2.1 Introduction

2.2 Solving Linear systems

2.2.1 Strategy

A lower triangular system  can be solved by forward substitution, mathematically
expressed as

An upper triangular system  can be solved by backward substitution, mathematically
expressed as

We need non-singular linear transformations that make an arbitrary matrix triangular.

2.2.2 Gauss Transformation

Gauss transformations make all entries of a vector below an index  zero:

with 

We also have that

, where  and  is the th column of the
identity matrix

, which means that , denoted as , is the same as , except that
the signs of the mulipliers are reversed.

2.2.3 LU Factorization

We make matrix  upper triangular by multiplying Gauss tranformations to  at each row.
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We can factor A as follows:

with  lower triangular, because , as a product of lower triangular matrices, is still
lower triangular, and  the inverse of of lower triangular matrix is again still lower
triangular. In fact the explicit formula for  is just

in which the only essential difference is the minus signs and .

2.2.4 Partial pivoting

Problems with Gauss elimination:

1. The process breaks down if the leading diagonal entry of the matrix is zero at any stage.

This issue is trivial to solve: switch rows with a row that has a non-zero element: pivoting.

2. In finite-precision arithmetic we wish to limit the size of the multipliers so that previous
rounding errors do not get amplified.

The multipliers will never exceed 1 in magnitude if for each column we choose the entry
of the largest magnitude on or below the diagonal as a pivot. Such a policy is called
partial pivoting

2.2.5 Gauss-Jordan Elimination

A similar transformation that makes the entries below AND above zero; reducing A to a
diagonal form.

Typically, it is not used because

The final solution phase is computationally somewhat cheaper because of the diagonal
form of the matrix, but this does not suffice make up for the additional cost in the
elimination phase.

However, it might be desirable in some situations:
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In an implementation on parallel computers, the workload remains the same throughout
the elimination phase and the final solutions can all be calculated at once.
It can also be used to calculate the inverse of a matrix explicitely by initializing the right-
hand side of the matrix as the identity matrix .

2.3 Special types of Linear Systems

Some systems allow faster calculations

Symmetric: , i.e.  for all 
Positive definite:  for all 
Banded:  for all , with  the bandwidth of 
Sparse: most entries of  are zero

2.3.1 Cholesky Factorization

If a matrix  is symmetric and positive definite, then an LU factorization can be arranged so that
, meaning that , where  is lower triangular.

We can get the elements of  by comparing  and 

In 2D

The diagonal entries are always positive, thus the roots are well defined.

The Cholesky factorization has a few very attractive properties:

The  square roots are all of positive numbers, so the algorithm is well-defined
Pivoting is not required
Only the lower triangle of  is accessed, and hence the strict upper triangular portion
need not be stored
Only about  multiplications and a similar number of additions are required.

Thus Cholesky factorization requires only about half as much storage and work as general LU-
factorization.

2.3.2 Computational Complexity

As shown in the examples below:

LU factorization of an  matrix takes<about  floating point operations (flops),
THIS IS NOT CORRECT AFAIK  Multiplications and additions, total 
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A complete matrix inversion takes about  flops and thus is more expensive

Solving an LU-factorized system using forward and backward substitution takes about 
flops. For large systems, this is neglegible compared to the factorization phase.

Cramer's rule (in which the system is solved using ratios of determinants) is astronomically
expensive

2.4 Sensitivity and Conditioning

2.4.1 Vector norms

p-norms

Important cases:

1-norm or Manhattan norm

2-norm or Euclidean norm

-norm (the limit for ):

2.4.2 Matrix norms

The norm of an  matrix  is given by

Two cases that are easy to calculate are:

, which corresponds the maximum absolute column sum of the matrix:

, which corresponds the maximum absolute row sum of the matrix:
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Properties

 if 
, for any scalar 

, for any vector 

2.4.3 Condition number

Measure of how close a matrix is to being singular.

Minimum value is 1 (for identity matrix). Is  (by definition) for singular matrices.

A condition number close to 1 corresponds to a well-posed problem, whereas a very large
condition number tells you that a solution of a linear system will change drastically for small
changes in the input data. 
We quantify this in the next paragraph

2.4.4 Error Estimation

let  be the solution to the perturbed system , and define the difference
between both solutions  as .

This results in

Consequently, , and hence .

Taking norms, and using the properties listed above we find:

 or 

Combining both equalities gives

A similar reasoning (which is left as an exercise) learns us that for deviations  in the matrix ,
such that , we find
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∥A∥



2.4.5 Residual

The residual  of an approximate solution  of the system  is defined as

Or relative residual:

Dividing both sized by  and filling in the definition of , we find

Therefore, a small residual implies a small relative error in the solution only if the matrix  has a
small condition number.

2.5 Summary

Solving linear systems

Diagonal systems can be solved by substitution
Lower triangular systems can be solved by forward substitution
Upper triangular systems can be solved by backward substitution

Transformations

Gauss transformations

make all entries of a vector below a certain index zero
Repeated Gauss transforms can make any matrix upper triangular.
Problems:

1. The process breaks down if the leading diagonal entry of the matrix is
zero at any stage.
This issue is trivial to solve: switch rows with a row that has a non-zero
element: pivoting.

2. In finite-precision arithmetic we wish to limit the size of the multipliers so
that previous rounding errors do not get amplified.
The multipliers will never exceed 1 in magnitude if for each column we
choose the entry of the largest magnitude on or below the diagonal as a
pivot. Such a policy is called partial pivoting

Gauss Jordan transformations

make all entries of a vector above and below a certain index zero

r x′ Ax = b

r = b − Ax′

∥r∥

(∥A∥ ⋅ ∥x′∥)

∥Δx∥ = ∥x′ − x∥ = ∥A−1(Ax′ − b)∥ = ∥ − A−1r∥ ≤ ∥A−1∥ ⋅ ∥r∥

∥x′∥ cond(A)

∥Δx∥

∥x′∥
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Repeated Gauss Jordan transforms can make any diagonal.
The final solution phase is computationally somewhat cheaper because of the
diagonal form of the matrix, but this does not suffice make up for the
additional cost in the elimination phase.
In an implementation on parallel computers, the workload remains the same
throughout the elimination phase and the final solutions can all be calculated
at once.

It can also be used to calculate the inverse of a matrix explicitely by initializing the
right-hand side of the matrix as the identity matrix .

Cholesky factorization

For symmetric positive definite systems.
Pivoting is not required
Only the lower triangle of  is accessed, and hence the strict upper triangular
portion need not be stored
Only about  multiplications and a similar number of additions are
required.

Complexity

LU factorization of an  matrix takes  multiplications and additions, total 

A complete matrix inversion takes about  flops and thus is more expensive
Solving an LU-factorized system using forward and backward substitution takes
about  flops. For large systems, this is neglegible compared to the factorization
phase.
Cramer's rule (in which the system is solved using ratios of determinants) is
astronomically expensive

I

A

n3/6

n × n n3/3

2n3/3

n3

n2



3 Linear Least squares

3.1 Introduction

Used when you have a system  in which  no longer is a square matrix but an 
matrix with . (more equations than unknowns). We call this an overdetermined problem.

As there exists no exact solution, we want to minimize the residual  as function of .

The best norm to use is the Euclidean norm (least squares).

3.2 Normal equations

We define

To minimize this function, we want to find a point which satisfies  
which is true for

where we used .

In other words, to minimize  for  we need to satisfy the  symmetric linear system

This system is known as the normal equations. The solution is unique if and only if the columns
of A are linearly independent, i.e., rank . In this case the matrix  is positive definite.
When some columns of  are linearly dependent, a manifold of solutions exists, i.e. rank

.

3.3 Problem Transformations

Problem:  
Solution: Find ways of solving that don't require explicit calculation of 

We can again abuse triangular systems, but can't use Gauss Eliminations because they don't
preserve the Euclidean norm.

3.3.1 Orthogonal Transformations

A square real matrix  is orthogonal if its columns are orthonormal, meaning that .

Such an orthogonal transformation  preserves the Euclidean norm of any vector :

Ax = b A m × n

m > n

r = b − Ax x

ϕ(x) = ∥r∥2
2 = rTr = (b − Ax)T (b − Ax) = bTb − xTATb − bTAx + xTATAx = bTb − 2xTATb

∇ϕ(x) = 0

0 = ∇ϕ(x) = 2ATAx − 2ATb

d
dx (aTQx) = 2Qx

x ϕ n × n

ATAx = ATb

(A) = n ATA

A

(A) < n

cond(ATA) = [cond(A)]2

ATA

Q QTQ = I

Q v



These preserve norms and thus don't amplify errors, BUT are usually more expensive than
simpler tranformations.

3.3.2 Triangular LQ problems and QR Factorization

Of form

with  an  upper triangular matrix. 
The residual is given by

If we solve the triangular system  (which can easily be achieved with back-substitution)
we have found the least squares solution  and we can conclude that the minimum sum of
squares is

Tranforming a system to triangular form is accomplished by QR factorization, which, for an 
 matrix  with  has the form

where  is an  orthogonal matrix and  is an  upper triangular matrix.

The transformed right-hand side then reads

The residual equals

A few common choices for QR factorization are:

Householder transformations
Givens transformations
Gram-Schmidt orthogonalization

3.3.3 Householder Transforms

Is given by

∥Qv∥2
2 = (Qv)TQv = vTQTQv = vTv = ∥v∥2

2
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O
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2
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x
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2.

m × n A m > n
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2 = ∥b − Q [ ]x∥2
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with  a nonzero vector. 
It can be shown that , which means that  is orthogonal and symmetric.

If we split up a given -vector  as

where  is a -vector with .

If we then take the householder vector to be

where , then the resulting Householder transformation annihilates the last 
 components of .

Similarly to the LU composition, we get

We also define

such that

To solve the least squares system , we solve the equivalent system

3.4 Rank deficiency

If . You can still perform a QR factorisation of  but the upper triangular matrix will
be singular. This means that multiple  vectors with the same minimal norm exist. Such
situations arise when using a wrong model, a corrupt data source, or a poorly designed
experiment.

3.5 Singular Value Decomposition

We decompose  as

H = I − 2
vvT

vTv

v

H = H−1 = HT H

m a
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where  is an  orthogonal matrix,  is an  orthogonal matrix, and  is an 
diagonal matrix, with

The diagonal entries  are called the singular values of  and are usually ordered so that 
. The columns  of  and  of  are the corresponding left and

right singular vectors.

The least-squares solution to  of minimum Euclidean norm is given by

The matrix norm corresponding to the Euclidean vector norm is equal to the largest singular
value of the matrix,

The condition number of an arbitrary matrix  is given by the ratio

Note that we find  for singular matrices, because there, .

The rank of a matrix is equal to the number of nonzero singular values it has.

The pseudoinverse of a general matrix  is given by

If the matrix  is square and nonsingular this definition agrees with .

In all cases, the solution to a least squares problem  is given by .

An other (computationally less good) way to find the pseudo-inverse can be obtained via the
normal equations

we see that

is a solution of the least squares problem .

Consequently, the pseudoinverse  is also given by

U m × m V n × n Σ m × n

σij = {0, for i ≠ j.
σi ≥ 0, for i = j.

σi A

σi−1 ≥ σi, i = 2, … , min{m,n} ui U vi V
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x = ∑
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uTb
i
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vi
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x≠0

∥Ax∥2

∥x∥2
= σmax

A
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3.6 Sensitivity and Condition Number

Let's now also generalize the expression,

which we found for square systems.

We start from the solution  to the least squares problem, i.e.

Similarly, denote with  the solution to a problem with a perturbed right hand side 
:

From the normal equations we know that

Thus,

Taking norms and dividing by  we find

Using the definition  and multiplying both the denominator and
enumerator in the right-hand-side with  we find

where  denotes the cosine of the angle  between the vectors  and .

To see why this is true, start from the inner product

rearrange to isolate  

make use of the normal equation to find
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Recognize that the numerator represents the square of the Euclidean norm of
the vector 

In contrast to the result for square matrices, it does not longer hold that the sensitivity of the
solution only depends on the matrix , but now also depends on the right-hand-side vector .

3.7 Summary

The easiest method to implement are the normal equations (which only require matrix
multiplications and Cholesky decomposition). However, this method is computationally
quite expensive and the error is proportional to , which means it can break
down quite easily

The most efficient and accurate orthogonalization method (for dense matrices at least) is
typically the Householder method. For square systems, it requires about the same amount
of work as the normal equations, but for strongly overdetermined systems, it becomes
only about half as efficient. On the other hand, it is much more broadly applicable due to
its better accuracy.

SVD is the most expensive method, but also offers superb robustness and reliability.

Ax
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∥Ax∥2

2
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A b
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4 Eigenvalue problems

4.1 Introduction

Equations of the form

This often comes down to finding roots of the characteristic polynomial of A

Calculating the roots of its charactersistic polynomial is not a good numerical way to find the
eigenvalues of a matrix of nontrivial size:

Computing the coefficients of the characteristic polynomial for a large matrix is in itself
already expensive
The coefficients of the characteristic polynomial can be highly sensitive to small
perturbations in  -> unstable
Rounding errors in finding the characteristic polynomial can destroy the accuracy of the
roots
Computing the roots of a polynomial of high degree is a nontrivial and substantial task
(Fundamental theory of Algebra)

We can exploit similarity these properties for more efficient algorithms:

If  is symmetric/Hermitian, all its eigenvalues are real.
Shift: if  and  any scalar, then ( ; The eigenvalues are shifted
by , but the eigenvectors remain unchanged.
Inversion:  has the same eigenvectors as , and eigenvalues 
Powers:  has the same eigenvectors as , and eigenvalues 
Polynomials: for a general polynomial , . Thus the eigenvalues of a
polynomial in a matrix  are given by the same polynomial, evaluated at the eigenvalues
of  and the corresponding eigenvectors remain the same as those of .
Similarity: A matrix  is similar to a matrix  if there exists an invertible matrix  such
that

It follows that:

In other words,  has the same eigenvalues as , but systematically
transforms its eigenvectors.

4.2 Calculating Eigenvalues and Eigenvectors

Ax = λx

det(A − λI) = 0

A

A

Ax = λx σ A − σI) = (λ − σ)x

σ

A−1 A 1/λ

Ak A λk

p(t) p(A)x = p(λ)x

A

A A

B A T

B = T−1AT

By = λy ⇒ T−1ATy = λy ⇒ ATy = λTy

B = T−1AT A



4.2.1 Power iteration

Repeatedly aplying  to an arbitrary non-zero vector.

Assuming that  has a unique eigenvalue  of maximum modulus, with corresponding
eigenvector , power iteration converges to a multiple of .

PROOF

Assume that we can express the starting vector  as a linear combination 
, with  the eigenvectors of .

Power iteration usually works well in practice, but might fail:

The starting vector  may have no component in the dominant eigenvector . In
practice this is very unlikely and is mitigated after a few iterations due to rounding errors
that introduce such a component.
There may be more than 1 eigenvalue with the same maximum modulus, in which case
the algorithm might converge to a linear combination of the corresponding eigenvectors.
For a real matrix and real starting vector, the iteration can never converge to a complex
vector.

Geometric growth of the components at each iteration risks overflow or underflow, so in
practice the approximate eigenvector is rescaled to have norm 1 at every iteraction. Then, 

 and .

The convergence rate of power iteration is linear (and proportional with , where  is
the eigenvalue with second largest modulus.

4.2.2 Inverse Iteration

For some applications we're interested in the smallest eigenvalue of a matrix. Then we can make
use of the fact that eigenvalues of  are . This suggests to use power iteration on the
inverse of , but the inverse of  does not need to be calculated explictly.

Instead, the equivalent system of linear equations is solved at each iteration using the triangular
factors resulting from e.g. LU-factorization of , which need only to be calculated once. Using 
and , we can then efficiently solve  using forward and backward substitution.

A

A λ1

v1 v1

x0
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n

∑
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n

∑
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αjA
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n

∑
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1 (α1v1 +

n

∑
j=2

(λj/λ1)kαjvj)

x0 v1

xk → v1/∥v1∥∞ ∥yk∥∞ → ∥λ1∥

∥λ2/λ1∥ λ2

A−1 1/λ

A A

A L

U Ay = x



Inverse iteration converges to the eigenvector corresponding to the largest eigenvalue of ,
which is the smallest eigenvalue of .

By shifting the matrix  to , all eigenvalues are also shifted by . 
In case of reverse iteration this approach gives some flexibility in which eigenvalue is found
because we converge to the eigenvalue closest to . Also, when the shift is already a close
approximation of the eigenvalue, the convergence is very rapid.

4.2.3 Rayleigh Quotient Iteration

Given an approximate eigenvector  for a real matrix , finding the best estimate for the
corresponding eigenvalue  can be considered as a linear least squares approximation problem:

It's solution, the Rayleigh quotient is given by

This is a better approximation for the eigenvalue than the one obtained at each stage in the
power iteration algorithm.

Given an approximate eigenvector, the Rayleigh quotient provides a good estimate for the
corresponding eigenvalue. Conversely, inverse iteration converges very rapidly to an
eigenvector if an approximate eigenvalue is used as shift. When combining these ideas we
arrive at Rayleigh quotient iteration.

4.2.4 Deflation

The process of deflation removes a known eigenvalue from a matrix, so that further eigenvalues
and eigenvectors can be determined.

This can be achieved by letting  be any vector such that . 
Then the matrix  has eigenvalues .

We're not going to look deeper into this procedure because

it becomes increasingly cumbersome and numerically less accurate to find eigenvalues
using deflation (so that inverse iteration using the estimated eigenvalues as a shift are
necessary)
there are better ways to find many eigenvalues of a matrix.

4.3 QR Iteration

In practice, the fastest and most used method to find the eigenvalues of a matrix is QR-
iteration. 
Starting from a matrix , we define the following sequence:

A−1

A

A A − σI σ

σ

x A

λ

xλ ≅Ax

λ =
xTAx

xTx

u1 uT
1 x1 = λ1

A − x1uT
1 0,λ2, … ,λn

A



This sequence will converge to a triangular matrix with the eigenvalues of  on its diagonal, or
a near-triangular form, which easily allows to calculate the eigenvalues.

This isn't in the theory PDF's but how it works is like this: 
First observe that  and  have the same eigenvalues, as 

which is a similarity transform. Then realize that what we're basically doing is
power iteration but with all eigenvectors at once. 
We need to orthonormalize all vectors at each iteration step, otherwise all
eigenvalues would just converge to a multiple of the largest eigenvalue. Explict
QR factorization prohibits the eigenvalues from converging in this way. Also see
V&F cursus for more details.

4.4 Summary

Power iteration

Works well in practice
The starting vector  may have no component in the dominant eigenvector . In
practice this is very unlikely and is mitigated after a few iterations due to rounding
errors that introduce such a component.
There may be more than 1 eigenvalue with the same maximum modulus, in which
case the algorithm might converge to a linear combination of the corresponding
eigenvectors.
For a real matrix and real starting vector, the iteration can never converge to a
complex vector.

Inverse iteration

Inverse iteration converges to the eigenvector corresponding to the largest
eigenvalue of , which is the smallest eigenvalue of .

Rayleigh Quotient iteration

better approximation for the eigenvalue than the one obtained at each stage in the
power iteration algorithm.

QR iteration 
- Calculates all eigenvalues at once 
- In practice the fastest and most used method

Am = QmRm

Am+1 = RmQm
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Am Am+1

Am+1 = RmQm = Q−1
m QmRmQm = Q−1

m AmQm = QT

mAmQm
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5 Nonlinear Equations

5.1 Introduction

In analogy to linear equations, where a system of equations is written as , we could write
down a system of nonlinear equations as .

However, it is more customary to subtract  from  so the equation that needs to be solved
is expressed as .

A solution value  such that  is called a root of the equation, and a zero of the function
. 

This problem thus is referred to as root finding or zero finding.

5.2 Number of solutions

This not entirely trivial.

Examples

Even in 1 dimension, many different cases are possible:

 has no solution.
 has one solution.

 has two solutions.
 has three solutions.

 has infinitely many solutions.

For a nonlinear equation it is possible to have degenerate solutions, which are called multiple
roots. Generally, for a smooth function , if  and 

, then  is a root of multiplicity .

If , then the solution is not degenerate and is called a simple root.

Geometrically, this means that the curve defined by  has a horizontal tangent at the x-axis.

5.3 Sensitivity

In one dimension the condition number for the root-finding problem of  near  is .

For functions for which  is small near the root, the error in the root finding problem can be
substantial.

At a multiple root , , so the condition number of a multiple root is infinite. 
Intuitively this is clear because a small change in the parameters of  can cause the multiple
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root to disappear or split up in more than one root.

5.4 Convergence Rates and Stopping Criteria

The convergence rate is the effectiveness with which a certain algorithm reaches it s solution.

To solve a nonlinear equation, one often has the choice between several iterative methods, with
different converge rates. The total cost of solving the system, depends on the amount of
iterations necessary to reach the solution with the desired accuracy AND the computational
complexity of a single iteration.

Let  be the error at iteration , where  is the approximate solution at iteration 
and  the (usually unknown) true solution.

An iterative method is said to converge with rate  if

for some finite constant .

Interesting cases are:

 and : linear convergence
 : superlinear convergence
 : quadratic convergence
 : cubic convergence

In an iterative method, the solution gains an additional  number of correct digits as compared
to the previous iteration.

The convergence of a certain algorithm tells us that we zoom in on the correct solution at a
certain rate, but it doesn't tell us the current accuracy of our solution at any given iteration.

Therefore, we don't know whether we reached a solution that is sufficiently close to the real
solution to decide that we can stop the algorithm.

More often than not, it's not trivial to define a suitable stopping criterion. 
A reasonable way is to look at the relative change in the solutions for successive iterations 

, and check that this quantity becomes smaller than a predefined error
tolerance .

A sensible value for  might be (but this really depends on your specific problem) the double
precision accuracy of .

5.5 Solving Nonlinear equations in 1D

5.5.1 Bisection method

ek = xk − x∗ k xk k

x∗

r

lim
k→∞

∥ek+1∥
∥ek∥r

= C

C > 0

r = 1 C < 1

r > 1

r = 2

r = 3

r

∥xk+1 − xk∥/∥xk∥ < ε

ε

ε

10−16



We look for a (short) interval  in which  changes sign. 
Such a bracket ensures that the function must take a zero value somewhere within this interval.

The bisection method begins with an initial bracket and then iteratively reduces its length until
the desired accuracy is reached.

At every iterations, the function is evaluated at the midpoint of the interval, such that half of the
interval can be discarded, based on the sign of the function value at the midpoint.

The bisection method makes no use of the magnitudes of the function values, and as a result it
is certain to converge, but very slowly. At each iteration, the bound on the possible error is
reduced by half, meaning that it converges linearly with  and .

Given a starting interval , the length of the interval after  iterations is , so that
achieving an error tolerance of  requires

iterations, regardless of the particular function  involved.

5.5.2 Fixed Point Iteration

Given a function , a value  such that  is called a fixed point of the function ,
since  remains unchanged when  is applied to it.

This problem is important because many iterative algorithms for solving nonlinear equations
(see below) are based on iterations of the form

The simplest way to characterize the behavior of an iterative scheme  for a fixed-
point problem  is to look at the derivative of  in the solution . 
It is a rule that if  and , then the iterative scheme is locally convergent. 
If however , then the scheme diverges for every initial value different from .

Proof

If  is a fixed point, then the error at the -th iteration is 

There exist a point  between  and  for which 

so 

[a, b] f

r = 1 C = 0.5

[a, b] k (b − a)/2k

ε

[log2 (
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We do not know the value of , but if , then by starting the iteration
sufficiently close to , there exists a constant  for which , for 

.

Thus we have 

As  implies , also  and the sequence converges.

The convergence rate of the iterative scheme is linear with . The smaller this
constant, the faster the convergence. Ideally, we have , in which case the Taylor
expansion gives

with  between  and . This yields

In this case the rate of convergence becomes quadratic In the next sections we'll see methods to
systematically choose  to reach this quadratic convergence.

5.5.3 Newton's method

We start from the truncated Taylor series

which is a linear function of  that approximates  near a given . 
It's zero is easily determined to be , assuming that . 
Because the zeros of both functions are not identical, this procedure is repeated in an iterative
scheme, called Newton's method

This method can be seen as a systematic way of transforming a nonlinear equation 
into a fixed-point problem , where

To study the convergence of this scheme, we determine the derivative

For simple roots  and ,  Thus the asymptotic convergence
rate of Newton's method is quadratic.
For a multiple root with multiplicity , it is only linearly convergent, with constant 

.
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Take note that these convergences are only local and it may not converge at all unless started
sufficiently close to the solution.

5.5.4 Secant method

One drawback of Newton's method is that both the function and its derivative needs to be
explicitly and evaluated at every iteration. In the Secant method the derivative is replaced by a
finite difference approximation on successive iterates:

Requires only one new function evaluation per iteration, but has the disadvantage of requiring
two starting guesses and converging more slowly (subquadratically but still faster than linear
with ).

The lower cost per iteration often more than offsets the larger number of iterations required,
such that the total cost of finding a root is often less for the secant method than for Newton's
method.

5.5.5 Inverse Interpolation

The secant method fits a straight line to two values of the function for each iteration. 
Its convergence rate can be improved (but not made to exceed ) by fitting a higher order
polynomial instead of a straight line.

This has however the drawbacks that the zeros of the fitted polynomial might be difficult to
compute, or might not exist at all.

Instead, we can use inverse interpolation where, instead of fitting a polynomial to values 
as function of the values , we do the opposite: 
we fit a polynomial  to the values  as function of the values . 
The next approximate solution is than simply .

The most used implementation of this idea is inverse quadratic interpolation where a parabola
is fitted through the values obtained at the last 3 iterations. 
Similar to the secant method this only requires one additional function evaluation per iteration,
but requires a little more memory and overhead in fitting the parabola. 
This algorithm has a converge rate of .

5.5.6 More than one root

All methods we saw until now zoom in on a single root of the function under study. 
Sometimes we're interested in all of the roots of e.g. a polynomial function.

For a polynomial  of degree , we want to find all  zeros (which might be complex).

f ′(xk) =
f(xk) − f(xk−1)

xk − xk−1

r ≈ 1.618

r = 2

f(xk)

xk

p xk f(xk)

p(0)

r ≈ 1.839
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To this end we can resort to several methods:

Use one of the methods shown above to find one root  and then deflate the polynomial
 to  which has a degree that is one lower and repeat the process. 

Note that it's a good idea to zoom in on each of the obtained roots using the
approximate values used this way to avoid any numerical errors introduced in the
deflating process.
Use a dedicated (complex) routine specifically designed for this purpose. 
These work by isolating the roots of a polynomial in the complex plane, and then refining
in a way similar to the bisection method to zoom in on each of the roots.
Form the companion matrix of the given polynomial and use an eigenvalue routine to
find its eigenvalues, which are also the roots of the polynomial.

5.6 Systems of nonlinear equations

Systems of nonlinear equations are more difficult to solve than single non-linear equations for a
number of reasons:

A much wider range of behavior is possible, so we don't get as far with theoretical analysis
of the existence and number of solutions.
There is no simple way to bracket a desired solution.
Computational overhead increases rapidly with the dimension of the problem.

One method that works in more dimensions is Newton's method:

For a differentiable vector function , the truncated Taylor series reads:

where  is the Jacobian matrix of  with elements

If  satisfies the linear system , then  is taken as an approximate zero of .

The computational cost of Newton's method in  dimensions is substantial:

Evaluating the Jacobian matrix (or approximating it) requires  function evaluations.
Solving the system , for instance using LU-factorization, costs 
operations.

5.7 Summary

Nonlinear equations in 1D

Bisection method

x1

p(x) p(x)/(x − x1)

f

f(x + s) ≈ f(x) + Jf(x)s

Jf (x) f

{Jf (x)}ij =
∂fi(x)

∂xj

s Jf(x)s = −f(x) x + s f

n

n2

Jf(x)s = −f(x) O(n3)



Sure to converge, but really slow.

Fixed point iteration

only works for a particular equation
convergence is linear (most of the time)

Newton's method

quadratic convergence
for a multiple root with multiplicity , only linearly convergent with constant 

only local convergence
works in multiple dimensions

Secant method

derivative doesn't need to be calculated analytically
requires two starting guesses
converges subquadratically
lower cost per iteration than Newton's method, but more iterations needed
(most of the time this method is less costly than Newton)

Inverse interpolation

requires only one additional function evaluation per iteration, but requires
more memory and overhead.

Systems of non-linear equations

A much wider range of behavior is possible, so we don't get as far with theoretical
analysis of the existence and number of solutions.
There is no simple way to bracket a desired solution.
Computational overhead increases rapidly with the dimension of the problem.

m

C = 1 − (1/m)



6 Optimization

6.1 Introduction

Given a function , and a set , we seek  such that  attains a minimum
on  at , i.e.  for all .

Such a point  is called a minimizer, or simply a minimum of . A maximum of  is a minimum
of , so it suffices to consider minimization.

The objective function  may be linear of nonlinear, and it is usually assumed to be
differentiable. 
The set  is usually defined by a set of equations and inequalities, called constraints, which may
be linear of nonlinear.
Any vector , i.e. that satisfies the constraints, is called a feasible point, and  is called the
feasible set. 
If , the problem is unconstrained

A general continuous optimization problem (note that we will not address discrete
optimization problems) has the form

where ,  and .

Optimization problems are classified by the properties of the functions involved. 
For example if ,  and  are all linear, the we have a linear programming problem. 
If any of them are nonlinear, we have a nonlinear programming problem.

What constitutes a solution to an optimization problem? 
A global minimum satisfies  for any feasible point . 
Finding such a global minimum, or even verifying that a point is a global minimum is difficult
unless the problem has special properties.

Most optimization methods use local information, such as derivatives, and consequently are
designed to find a local minimum. 
Often the best one can do to find a global minimum is use a very large set of starting points,
widely scattered throughout the feasible set. 
The lowest minimum found this way has a good (but not perfect) chance of being the global
minimum.

The first-order necessary condition for a minimum is that the gradient of the objective
function  is zero.
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Consider the Hessian matrix of . 
This is a matrix-valued function  (only defined if  is twice differentiable).

We can then classify critical points as follows:

At a critical point , where , if  is...

Positive definite, then  is a minimum of 
Negative definite, then  is a maximum of 
Indefinite, then  is a saddle point of 
Singular, then various pathological situations can occur

This is called the second-order sufficient condition.

6.2 Optimization in 1D

A function  is unimodal on an interval  if there is a unique  such that 
 is the minimum value of  on , and for any  with ,

 implies  and  implies .

Thus,  is strictly decreasing for  and strictly increasing for . 
This property will allow us to refine an interval containing a solution by computing sample
values of the function within the interval and discarding portions of the interval according to
the function values obtained, analogous to bisection for solving nonlinear equations.

6.2.1 Golden Section Search

Suppose  is unimodal on , and let  with . 
By comparing the function values  and  we can exclude a subinterval, either  or 

 because we know that the minimum lies within the remaining subinterval.

To make consistent progress in reducing the length of the interval containing the minimum,
each pair of points in the new interval should have the same relative position as the old pair in
the old interval.

To accomplish this objective, we choose the relative positions of the two points to be  and 
 , where , so that  (the "golden ratio") and 

. The complete procedure converges linearly to a local minimum if the function is
unimodal within the initial bracket.
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The golden section search for optimization is analogous to the bisection method to solve a
nonlinear equation. Similarly, we do not make use of the function values, other than to compare
them.

6.2.2 Successive parabolic interpolation

The simplest approach of fitting a second order polynomial to the problem is successive
parabolic interpolation, where the function is evaluated at three points, and a parabola is fitted
to the resulting function values. 
The minimum of the parabola is used as a new approximate value of the minimum.

This algorithm is not guaranteed to converge, but if it is started reasonable close to a minimum
it converges superlinearly with convergence rate 

6.2.3 Newton's method

Instead of fitting a parabola to the points, we can also obtain a local quadratic approximation
based on a truncated Taylor expansion.

The minimum of this function is given by , which we can use to find the minimum
of the objective function in an iterative way.

This method is equivalent to Newton's method for solving nonlinear equations, and also has a
quadratic convergence rate. 
However, unless it is started sufficiently close to the desired minimum it might not converge at
all, or converge to a maximum or inflection point instead.

6.3 Unconstrained optimization in ND

6.3.1 Direct Search

Analogous to the golden section search for one-dimensional optimization, in direct search
methods for multidimensional optimization the objective function values are only compared to
each other. 
However, in contrast to the golden section search, they do not retain the convergence
guarantee.

For example: Nelder and Mead. 
To seek the minimum of a function , the function is first evaluated at  starting
points. 
These  starting points form a simplex meaning that no three points are colinear (e.g. a
simplex in two dimensions, has three points which form a triangle). 
A new point is generated along the straight line connecting the point with the highest function

r ≈ 1.324

f(x + h) ≈ f(x) + f ′(x)h +
1
2
f ′′(x)h2

−f ′(x)/f ′′(x)

f : Rn → R n + 1

n + 1



value (the worst point) and the centroid of the remaining  points. 
This new point then replaces the worst point and the process is repeated until convergence.

Direct search methods are especially useful for nonsmooth objective functions, for which few
other methods are applicable, and they can be effective when  is small, but they tend to be
quite expensive when  is larger than two or three. 
One advantage of direct search methods is that they can easily be parallelized.

6.3.2 Steepest Descent

The negative gradient of a differentiable function  points downhill and locally, 
 is the direction of steepest descent. 

Thus, the negative gradient is a potentially fruitful direction in which to seek points having
lower function values.

The maximum possible benefit from movement in any downhill direction is to attain the
minimum of the objective function along that direction. 
For any fixed  and direction , we can define a function :

In this way the problem of minimizing the objective function  along the direction of  from  is
seen to be a one-dimensional optimization problem. 
Once a minimum is found in a certain direction, the negative gradient is computed at this new
point and the process is repeated until convergence. 
This process of minimizing an objective function only along a fixed line in  is called a line
search.

The steepest descent method is very reliable in that it can always make progress provided the
gradient is nonzero. However, the resulting iterations can zigzag back and forth, making very
slow progress. 
In general the convergence rate of steepest descent is only linear.

6.3.3 Newton's Method

Again we make a local quadratic approximation, which can be obtained from a truncated Taylor
series expansion

where  is the Hessian matrix. 
This quadratic function in  is minimized when

The convergence rate of Newton's method for unconstrained optimization is normally quadratic
but the method is unreliable unless started close enough to the solution. 
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While Newton's method does not require a line search, it may still be advisable to perform a
line search along the direction of the Newton step in order to make the method more robust.

Newton's method usually converges very rapidly once it nears a solution, but it requires a
substantial amount of work per iteration. 
Specifically, for a problem with a dense Hessian matrix, each iteration requires  scalar
function evaluations to form the gradient and the Hessian matrix while  arithmetic
operations are required to solve the linear system for the Newton step. s

6.3.4 Quasi-Newton Methods

Many variants of Newton's method have been developed to reduce its overhead or improve its
reliability, or both. These quasi-Newton methods have the general form

where  is a line search parameter and  is some approximation of the Hessian matrix
obtained in any number of ways, including secant updating, finite differences, periodic
reevaluation, or neglecting some terms in the true Hessian of the objective function.

Many quasi-Newton methods are more robust than the pure Newton method and have
considerably lower overhead per iteration yet remain superlinear (though not quadratic).

6.3.5 Secant updating Methods

Several secant updating formulas for unconstrained minimization have been developed that not
only preserve symmetry in the approximate Hessian matrix but also preserve positive
definiteness. 
Symmetry reduces the amount of work and storage required by about half, and positive
definiteness guarantees that the resulting quasi-Newton step will be a descent direction. 
In practice, a factorization of  is updated rather than  itself, so that the linear system for
the quasi-Newton step can be solved at a cost per iteration of  rather than 
operations.

Unlike Newton's method for optimization, no second derivatives are required. 
And most of these methods are often started with , which means the first step is along
the negative gradient (i.e. along the direction of steepest descent) and then second derivative
information is gradually built up in the approximate Hessian matrix by updating over successive
iterations.

6.3.6 Conjugate Gradient method

The conjugate gradient method is another alternative to Newton's method that does not
require explicit second derivatives. 
Indeed, unlike secant updating methods, the conjugate gradient method does not even store
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an approximation to the Hessian matrix, which makes it especially suitable for very large
problems.

As the name suggests, the conjugate gradient method also uses gradients, but in contrast to
the steepest descent method it avoids repeatedly searching in the same directions by modifying
the new gradient at each step to remove components in previous directions. 
The resulting sequence of conjugate (i.e. orthogonal in the inner product )
search directions implicitly accumulates information about the Hessian matrix as iterations
proceed.

Theoretically, the conjugate gradient method is exact after at most  iterations for a quadratic
objective function in  dimensions, but it is usually quite effective for more general
unconstrained optimization problems as well. 
It is common to restart the algorithm after every  iterations by restarting to use the negative
gradient at the current point.

6.4 Nonlinear Least Squares

Least squares data fitting can be viewed as an optimization problem. 
Given data points , we wish to find the vector  of parameters that
gives the best fit to the model function , where . 
Previously, we only considered cases in which the model function  was linear in the
components of  but now we are in a position to consider nonlinear least squares as a special
case of nonlinear optimization.

If we define the components of the residual function  by

then we wish to minimize the function

i.e. the sum of squares of the residual components (the factor 1/2 is inserted for later
convenience and has no effect on the optimal value for ). 
If we apply Newton's method and  is an approximate solution, then the Newton step  is
given by the linear system

where the gradient vector and Hessian matrix of  are given by

and

(x, y) = xTHfy

n

n

n

(ti, yi), i = 1, … ,m x ∈ R
n

f(t, x) f : Rn+1 → R

f

x

r : Rn → R
m

ri(x) = yi − f(ti, x), i = 1, … ,m,

ϕ(x) =
1
2

r(x)Tr(x)

x

xk sk

Hϕ(xk)sk = −∇ϕ(xk)

ϕ

∇ϕ(x) = JT (x)r(x)

Hϕ(x) = JT (x)J(x) +
m

∑
i=1

ri(x)Hri(x)



in which  is the Jacobian matrix of , and  denotes the Hessian matrix of the
component function .

The Newton step  is thus given by the linear system

The  Hessian matrices  of the residual components are usually inconvenient and expensive
to compute. Fortunately, we can exploit the special structure of this problem to avoid
computing them in most cases, as we will see next.

6.4.1 Gauss-Newton Method

Note that in  each of the Hessian matrices  is multiplied by the corresponding residual
component , which should be small at a solution, provided that the model function fits the
data reasonably well. This observation motivates the Gauss-Newton method for nonlinear least
squares in which the terms involving  are dropped from the Hessian and the linear system

determines an approximate Newton step  at each iteration.

We recognize this system as the normal equations for the  linear least squares problem

which can be solved more reliably by orthogonal factorization of . 
The next approximate solution is then given by  and the process is repeated until
convergence. 
In effect, the Gauss-Newton method replaces a nonlinear least squares problem by a sequence
of linear least squares problems whose solutions converge to the solution of the original
nonlinear problem.

If the residual components at the solution are relatively large, then the terms omitted from the
Hessian matrix may not be negligible, in which case the Gauss-Newton approximation may be
inaccurate and convergence is no longer guaranteed. 
In such cases, it may be best to use a general nonlinear optimization method that takes into
account the full Hessian matrix.

6.4.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method is a useful alternative when the Gauss-Newton method yields
an ill-conditioned or rank-deficient linear least squares subproblem. 
At each iteration of this method, the linear system for the step  is of the form

JT (x) r(x) Hri(x)

ri(x)

sk

(JT (xk)J(xk) +
m

∑
i=1

ri(xk)Hri(xk))sk = −JT (xk)r(xk)

m Hri

Hϕ Hri

ri

Hri

(JT (xk)J(xk))sk = −JT (xk)r(xk)

sk

m × n

J(xk)sk ≅−r(xk)

J(xk)

xk+1 = xk + sk

sk

(JT (xk)J(xk) + μkI)sk = −JT (xk)r(xk)



where  is a nonnegative scalar parameter chosen by some strategy. The corresponding linear
least squares problem to be solved is

This method can be interpreted as replacing the terms omitted from 
the true Hessian by a scalar multiple of the identity matrix or as using a 
weighted combination of the Gauss-Newton step and the steepest descent direction. 
With a suitable strategy for choosing the parameter , typically based on a trust-region
approach, the Levenberg-Marquardt method can be very robust in practice, and it forms the
basis for several effective software packages for solving nonlinear least squares problems.

6.5 Constrained Optimization

Equality constraints which are of the general form 
Inequality constraints which are of the general form 

Inequality constraints may be irrelevant to the solution and a given inequality constraint 
 is said to be active or binding at a feasible point  if . Naturally, equality

constraints are always active.

Both equality-constrained and inequality-constrained problems can be solved using Lagrange
multipliers although the optimality conditions become more complicated when inequality
constraints are involved.

The minimize function of scipy.optimize provides several algorithms for constrained
minimization.

6.6 Summary

Optimization in 1D

Golden section search

The procedure converges linearly to a local minimum if the function is
unimodal within the initial bracket. 
-The golden section search for optimization is analogous to the bisection
method to solve a nonlinear equation.
We do not make use of the function values, other than to compare them.

Succesive parabolic interpolation

This algorithm is not guaranteed to converge, but if it is started reasonable
close to a minimum it converges superlinearly with convergence rate 

Newton's method

μk

[ ]sk ≅[ ]
J(xk)

√μk I
−r(xk)

0

μk

g(x) = 0

h(x) ≤ 0

hi(x) ≤ 0 x ∈ S hi(x) = 0

r ≈ 1.324



This method is equivalent to Newton's method for solving nonlinear equations,
and also has a quadratic convergence rate.
unless it is started sufficiently close to the desired minimum it might not
converge at all, or converge to a maximum or inflection point instead.

Unconstrained optimization in ND

Direct search

Direct search methods are especially useful for nonsmooth objective functions,
for which few other methods are applicable, and they can be effective when 
is small, but they tend to be quite expensive when  is larger than two or
three.
One advantage of direct search methods is that they can easily be parallelized.

Steepest descent

The steepest descent method is very reliable in that it can always make
progress provided the gradient is nonzero. However, the resulting iterations
can zigzag back and forth, making very slow progress.
In general the convergence rate of steepest descent is only linear.

Newton's method

The convergence rate of Newton's method for unconstrained optimization is
normally quadratic but the method is unreliable unless started close enough to
the solution.
Newton's method usually converges very rapidly once it nears a solution, but it
requires a substantial amount of work per iteration.
for a problem with a dense Hessian matrix, each iteration requires  scalar
function evaluations to form the gradient and the Hessian matrix while 
arithmetic operations are required to solve the linear system for the Newton
step. s

Quasi-Newton methods

Many quasi-Newton methods are more robust than the pure Newton method
and have considerably lower overhead per iteration yet remain superlinear
(though not quadratic).

Secant updating methods

preserve symmetry in the approximate Hessian matrix but also preserve
positive definiteness.
Symmetry reduces the amount of work and storage required by about half,
and positive definiteness guarantees that the resulting quasi-Newton step will
be a descent direction.

n

n

O(n2)

O(n3)



Unlike Newton's method for optimization, no second derivatives are required.

Conjugate gradient method

does not even store an approximation to the Hessian matrix, which makes it
especially suitable for very large problems.
Theoretically, the conjugate gradient method is exact after at most  iterations
for a quadratic objective function in  dimensions, but it is usually quite
effective for more general unconstrained optimization problems as well.

Nonlinear Least squares

Gauss-Newton method

In effect, the Gauss-Newton method replaces a nonlinear least squares
problem by a sequence of linear least squares problems whose solutions
converge to the solution of the original nonlinear problem.

Levenberg-Marquardt method

the Levenberg-Marquardt method can be very robust in practice, and it forms
the basis for several effective software packages for solving nonlinear least
squares problems

Constrained optimization

In general can be solved using Lagrange multipliers.
Efficient algorithms are in scipy.

n

n



7 Interpolation

7.1 Introduction

There are many different purposes for which you might want to use interpolation:

Plotting a smooth curve through discrete data points
Reading between the lines of a table
Differentiating or integrating tabular data
Evaluating a mathematical function quickly and easily
Replacing a complicated function by a simple one

For given data 

with , we seek a function  such that

For a given set of data points , an interpolant is chosen from the space of
functions spanned by a suitable set of basis functions .

The interpolating function  is therefore expressed as a linear combination of these basis
functions

where the parameters  are to be determined. Requiring that  interpolate the data 
means that

which is a system of linear equations that we can write in matrix form as 
, 

where the entries of the basis matrix  are given by , the components of the right-
hand-side vector  are the known data points , and the components of the vector  the
unknown parameters  we want to determine.

7.2 Polynomial Interpolation of discrete data

7.2.1 Monomial basis

To interpolate  data points, we choose  so that the dimension of the space will match
the number of data points. An obvious basis for  is given by the first  monomials

(ti, yi), i = 1, … ,m,

t1 < t2 < … < tm f : R → R

f(ti) = yi, i = 1, … ,m,

(ti, yi), i = 1, … ,m,

ϕ1(t), … ,ϕn(t)

f

f(t) =
n

∑
j=1

xjϕj(t)

xj f (ti, yi)

f(t) =
n

∑
j=1

xjϕj(ti) = yi

Ax = y

A aij = ϕj(ti)

y yi x

xj

n k = n − 1

Pn−1 n



for which a given polynomial  has the form

The system of equations we want to solve is

Such a matrix, whose columns are subsequent powers of a variable is called a Vandermonde
matrix.

Although it is not singular, it is often nearly singular because the functions become increasingly
difficult to distinguish as the degrees increase (see figure below). This makes the the columns of
the Vandermonde matrix almost linearly dependent.

In addition to the computational cost of determining the interpolating polynomial, the cost of
evaluating it is also an important factor!

When represented in the monomial basis, a polynomial

can be evaluated very efficiently using Horner's method also known as Nested evaluation or
synthetic division:

which requires only  summations and  additions.

7.2.2 Lagrange Interpolation

For a given set of data points  
the Langrange basis functions for  are given by

It can be seen that

which means that for this basis the matrix of the linear system  is the identity matrix . 
The interpolating polynomial then is

ϕj(t) = tj−1

pn−1 ∈ Pn−1

pn−1(t) = x1 + x2t + ⋯ + xnt
n−1

Ax = = = y

⎡⎢⎣1 t1 t2
1 ⋯ tn−1

1

1 t2 t2
2 ⋯ tn−1

2

⋮ ⋮ ⋮ ⋱ ⋮
1 tn t2

n ⋯ tn−1
n

⎤⎥⎦ ⎡⎢⎣x1
x2

⋮
xn

⎤⎥⎦ ⎡⎢⎣y1
y2

⋮
yn

⎤⎥⎦pn−1(t) = x1 + x2t + x3t
2 + ⋯ + xnt

n−1

pn−1(t) = x1 + t(x2 + t(x3 + t(⋯ (xn−1 + xnt) ⋯)))

n n

(ti, yi), i = 1, … ,m,

Pn−1

lj(t) =
∏n

k=1,k≠j(t − tk)

∏n
k=1,k≠j(tj − tk)

lj(t) is a polynomial of degree n − 1

lj(ti) = {1, if i = j.
0, if i ≠ j.

Ax = y I



which is easy to construct.

6.5.1 Newton Interpolation

For a given set of data points  
the Newton basis functions for  are given by

Note that we assign  for 

The interpolating polynomial then has the form

From the definition it can be seen that the basis matrix  is lower triangular, so the system 
 can efficiently be solved by forward substitution.

You can also use Horner's method to evaluate the polynomial:

Another useful property of the newton basis functions is that the interpolant can be constructed
incrementally as more data points are added.

If  is a polynomial of degree  which interpolates  data points, then for any constant 

is a polynomial of degree  that also interpolates the same  points. The free parameter  can
be 
chosen so that  interpolates the new data points  as

6.6 Polynomial interpolation of a continuous function

Interpolants of a high degree

can be expensive to determine or evaluate (depending on the basis chosen)
by definition a polynomial of degree  has  extrema, and thus many "wiggles" 
Even if the polynomial passes through all required data points, it may fluctuate wildly in
between these points and does not approximate an underlying function at all.

pn−1(t) = y1l1(t) + y2l2(t) + ⋯ + ynln(t)

(ti, yi), i = 1, … ,m,

Pn−1

πj(t) =
j−1

∏
k=1

(t − tk)

πj(t) = 1 j = 1

pn−1(t) = x1 + x2(t − t1) + x3(t − t1)(t − t2) + ⋯xn(t − t1) … (t − tn−1)

A

Ax = y

pn−1(t) = x1 + (t − t1) [x2 + (t − t2) [x3 + (t − t3) [⋯ (xn−1 + xn(t − tn−1)) ⋯]]]

pj(t) j − 1 j

xj+1

pj+1(t) = pj(t) + xj+1πj+1(t)

j j xj+1

pj+1(t) yj+1

xj+1 =
yj+1 − pj(tj+1)

πj+1(tj+1)

n n − 1



Polynomial interpolants of increasing degree converge to the function in the middle of the
interval, but diverge near the endpoints. More satisfactory results can be obtained if our sample
points are bunched near the ends of the interval.

One good way to achieve this is to use the Chebysev points which are defined on the interval 
, but can transformed to an arbitrary interval.

6.7 Piecewise Polynomial Interpolation

Consider a set of ordered data points  in the interval . A function  is called a spline
interpolation of degree  if

 is defined on the interval 
the th derivative of  is continuous in the interval  for 

 is a polynomial of degree  in every subinterval between the knots

The most used form of spline interpolation is Cubic interpolation.

A spline with  knots has  piecewise polynomials of degree  that interpolate the data.
The number of free parameters thus is . 
For instance, a linear polynomial( , and with 2 free parameters per polynomial) has 
free parameters and a cubic spline has .

Interpolating the data requires  equations, because each of the 
polynomials must match the two data points at either end of the subinterval.
Requiring the derivative to be continuous gives  additional equations, because
there are  interior data points.
Requiring that the second derivative is also continuous gives  additional equations.

The spline of lowest degree that has sufficient variables to satisfy all these equations is a cubic
spline (  variables for  conditions). The remaining two variables can be fixed in a
number of ways:

clamped cubic spline: Specifying the first derivative of the endpoints
natural spline: forcing the second derivative to be zero at the endpoints
not-a-knot: the third derivative of the spline is continuous at the one-but-outermost data
points
periodic spline: forcing equality of the first as well as second derivatives of the two
outermost points (if the spline is to be periodic)

6.8 Summary

Interpolation of discrete data

[−1, 1]

ti = cos( (2i − 1)π
2k

), i = 1, … , k

(xi, yi) [a, b] S

k

S [a, b]

r S [a, b] 0 ≤ r ≤ k − 1

S ≤ k

n (n − 1) k

(k + 1)(n − 1)

k = 1 2(n − 1)

4(n − 1)

2(n − 1) (n − 1)

(n − 2)

(n − 2)

(n − 2)

4n − 4 4n − 6



Monomial Interpolation

System of equations is a Vandermonde matrix (which is often nearly singular:
difficult to distinguisch large powers).
Polynomial can be evaluated quickly using Horner's method.

Lagrange Interpolation

System of equations is the identity matrix.
Polynomial is easy to construct.

Newton Interpolation

System of equations is (lower) triangular -> forward substitution.
Polynomial can be evaluated quickly using a (modified) Horner's method.
Interpolant can be constructed incrementally as more data points are added.

Interpolation of a continuous function

can be expensive to determine or evaluate (depending on the basis chosen).
by definition a polynomial of degree  has  extrema, and thus many "wiggles".
Polynomial interpolants of increasing degree converge to the function in the middle of the
interval, but diverge near the endpoints.
Use the Chebysev points to concentrate the sampling near the edges of the interval.

Piecewise interpolation

The most used form of spline interpolation is Cubic interpolation.
Interpolating the data requires  equations, because each of the 
polynomials must match the two data points at both ends of the subinterval.
Requiring the derivative to be continuous gives  additional equations, because
there are  interior data points.
Requiring that the second derivative is also continuous gives  additional equations.
The spline of lowest degree that has sufficient variables to satisfy all equations is a cubic
spline (  variables for  conditions). The remaining two variables can be fixed in
a number of ways.

n n − 1

2(n − 1) (n − 1)

(n − 2)

(n − 2)

(n − 2)
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7 Integration and Differentiation

7.1 Integration

Riemann sums are in theirselves a way to approximate an integral, but there are better
numerical methods.

7.2 Existence, Uniqueness, Conditioning

For all practical purposes, a function is integrable if it is bounded (no singularities) with at
most a finite number of points of discontinuity within the interval of integration.

Since all the Riemann sums defining the Riemann integral of a given function on a given
interval must have the same limit, uniqueness of the Riemann integral is built into its
definition.

Because integration is an averaging or smoothing process that tends to dampen the effect
of small changes in the integrand, integration problems are typically well-behaved with a
small condition number.

7.3 Numerical Quadrature

Essentially quadrature is interpolation:

The integrand function  is evaluated at the points , .
The polynomial of degree  that interpolates the function values at those points is
determined.
The integral of the interpolant is then taken as an approximation to the integral of the
original function.

To find the weights that integrate the first  polynomials exactly, we can use the method of
undetermined coefficients:

In matrix form this becomes:

f xi i = 1, … ,n

n − 1

n

w1 ⋅ 1 + w2 ⋅ 1 + ⋯ + wn ⋅ 1 = ∫
b

a

1dx = b − a

w1 ⋅ x1 + w2 ⋅ x2 + ⋯ + wn ⋅ xn = ∫
b

a

xdx = (b2 − a2)/2

⋮

w1 ⋅ xn−1
1 + w2 ⋅ xn−1

2 + ⋯ + wn ⋅ xn−1
n = ∫

b

a

xn−1dx = (bn − an)/n



7.3.1 Accuracy and other concepts

By construction, an -point interpolatory quadrature rule integrates each of the first 
monomial basis functions exactly, and hence by linearity it integrates any polynomial of degree
at most  exactly.

A quadrature rule is said to be of degree  if it is exact (i.e., the error is zero) for every
polynomial of degree  but is not exact for some polynomial of degree .

An -point interpolatory quadrature rule is of degree at least .

The significance of the degree is that it conveniently characterizes the accuracy of a given rule. 
If  is an interpolatory quadrature rule, and  is the polynomial of degree at most 
interpolating an integrand  at the nodes , then we get the following error bound for
the approximate integral: 

where .

the preceding general bound already indicates that we can obtain higher accuracy by taking 
larger, or  smaller, or both.

A sequence of quadrature rules is said to be progressive if the nodes of  are a subset of
those of  for , so that they don't need to be re-evaluated.

There are simple quadrature rules, in which a single rule is applied over the entire given
interval. 
There are also composite (or compound) quadrature rules, which is equivalent to using
piecewise polynomial interpolation on the original interval (using different quadrature rules on
each subinterval).

7.3.2 Newton-Cotes Quadrature

An -point open Newton-Cotes rule has nodes

and an -point closed Newton-Cotes rule has nodes

7.3.2.1 The midpoint rule
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Interpolating the function value at the midpoint of the interval by a polynomial of degree zero
(i.e., a constant) gives the one-point open Newton-Cotes rule known as the midpoint rule:

7.3.2.2 The trapezoid rule

Interpolating the function values at the two endpoints of the interval by a polynomial of degree
one (i.e., a straight line) gives the two-point closed Newton-Cotes rule known as the trapezoid
rule:

7.3.2.3 Simpson's rule

Interpolating the function values at the two endpoints and the midpoint by a polynomial of
degree two (i.e., a quadratic) gives the three-point closed Newton-Cotes rule known as
Simpson’s rule:

7.3.2.4 Error Analysis

The error in the midpoint quadrature rule can be estimated using a Taylor series expansion
about the midpoint  of the interval :

Integrating this expression from  to , the odd-order terms drop out, yielding

where  and  represent the first two terms in the error expansion for the midpoint rule.

For the trapezoid rule, take  and  into the Taylor series, and simplify. 

1. The midpoint rule is about twice as accurate as the trapezoid rule, despite being based on
a polynomial interpolant of degree one less.

2. The difference between the midpoint rule and the trapezoid rule can be used to 
estimate the error in either of them
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(x − m)3 +
f (4)(m)

24
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a b
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24
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1920

(b − a)5 + ⋯ = M(f) + E(f) + F(f)
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T (f) − M(f)

3



3. Halving the length of the interval decreases the error in either rule by a factor of about
1/8

For Simpson's rule, an appropriately weighted combination of the midpoint and trapezoid rules
eliminates the leading term, , from the error expansion,

In general, for any odd value of , an -point Newton-Cotes rule has degree one greater than
that of the polynomial interpolant on which it is based due to cancellation of positive and
negative errors.

The midpoint rule integrates linear polynomials exactly (degree 1). the error for Simpson’s rule
depends on the fourth and higher derivatives in the Taylor expansion, which vanish for cubic as
well as quadratic polynomials, so that Simpson’s rule is of degree three rather than two.

7.3.2.5 Drawbacks

The interpolation of a continuous function at equally spaced points by a high-degree
polynomial may suffer from unwanted oscillation, and as the number of interpolation
points grows, convergence to the underlying function is not guaranteed.

it can be shown that every n-point Newton-Cotes rule with  has at least one
negative weight and that the sum of all weights tends to infinity as . Thus they are
ill-onditioned

The presence of large positive and negative weights also means that the value of the
integral is computed as a sum of large quantities of differing sign, and hence substantial
cancellation is likely in finite-precision arithmetic.

We can't use Newton-Cotes with large subdivions: 
In practice, therefore, Newton-Cotes rules are usually restricted to a modest number of points,
and if higher accuracy is required, then the interval is subdivided and composite quadrature is
used.

7.3.3 Clenshaw-Curtis Quadrature

Using the Chebysev points, we can achieve higher accuracy. 
Efficient implementations of quadrature rules based on the Chebyshev points using FFT have
become known as Clenshaw-Curtis quadrature.

It can be shown that the resulting weights are always positive for any , and that the resulting
approximate values converge to the exact integral as . 
Thus, quadrature rules based on the Chebyshev points are extremely attractive in that they are
always stable and more accurate then N-C for the same number of nodes.
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2
3
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n ≤ 11

n → ∞
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Nevertheless, the degree of an -point rule is only , which is well below the maximum
possible.

7.3.4 Gaussian Quadrature

In Gaussian quadrature, both the nodes and the weights are optimally chosen to maximize the
degree of the resulting quadrature rule.

In general, for each  there is a unique -point Gaussian rule, and it is of degree . 
Gaussian quadrature rules therefore have the highest possible accuracy for the number of
nodes used, but they are significantly more difficult to derive than Newton-Cotes rules. 
The nodes and weights can still be determined by the method of undetermined coefficients, but
the resulting system of equations is nonlinear.

For any  the Gaussian nodes are symmetrically placed about the midpoint of the
interval; for odd values of  the midpoint itself is always a node.

nodes are usually irrational numbers even when the endpoints a and b are rational. 
This feature makes Gaussian rules relatively inconvenient for hand computation,
compared with simple Newton- 
Cotes rules. Therefore use tabulated values (but's let's be real, calculating integrals by
hand in 2021?)

Gaussian quadrature weights and nodes are derived for some specific interval and thus
any other interval of integration must be transformed into 
the standard interval for which the nodes and weights have been tabulated. 

using 

I t can be shown that the resulting weights are always positive for any , so that Gaussian
quadrature rules are always stable and the resulting approximate values converge to the exact
integral as .

for ,  and  have no nodes in common (except for the midpoint when  and  are
both odd). Thus, Gaussian rules are not progressive.

Avoiding this additional work is the motivation for Kronrod quadrature rules. 
Such rules come in pairs: an -point Gaussian rule  and a -point Kronrod rule 
whose nodes are optimally chosen subject to the constraint that all of the nodes of  are
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reused in . 
Thus,  of the nodes used in  are prespecified, leaving the remaining  nodes, as well
as all  of the weights (including those corresponding to the nodes of  ), free to be
chosen to maximize the degree of the resulting rule. 
The rule  is therefore of degree , whereas a true -point Gaussian rule would
be of degree . 
Thus, there is a tradeoff between accuracy and efficiency.

In using a Gauss-Kronrod pair, the value of  is taken as the approximation to the integral,
and a realistic but conservative estimate for the error, based partly on theory and partly on
experience, is given by

Because they efficiently provide both high accuracy and a reliable error estimate, Gauss-
Kronrod rules are among the most effective quadrature methods available. The pair of rules (
,  ), in particular, has become a commonly used standard.

7.3.5 Composite Quadrature

This approach is equivalent to using piecewise polynomial interpolation on the original interval
and then integrating the piecewise interpolant to approximate the integral.

A composite, or compound, quadrature rule on a given interval  results from subdividing
the interval into  subintervals, typically of uniform length , applying an -point
simple quadrature rule  in each subinterval, and then taking the sum of these results as the
approximate value of the integral.

If the rule  is open, then evaluating the composite rule will require  evaluations of the
integrand function. 
If  is closed, on the other hand, then some of the points are repeated, so that only 

 evaluations of the integrand are required.

In principle, by taking  sufficiently large it is possible to achieve arbitrarily high accuracy
(up to the limit of the arithmetic precision) using a composite rule, even with an
underlying rule  of low degree, although this may not be the most efficient lway to
attain a given evel of accuracy.

Composite quadrature rules also offer a particularly simple means of estimating the error
by using different levels of subdivision, which can easily be made progressive.

7.3.6 Adaptive Quadrature

A typical adaptive quadrature strategy works as follows:

1. First we need a pair of quadrature rules, say  and , whose difference provides an
error estimate. 
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A few examples are

The trapezoid and midpoint rules, whose difference overestimates the error in the more
accurate rule by a factor of three (see above).

Greater efficiency is usually obtained with rules of higher degree, however, such as the
Gauss-Kronrod pair (  ,  ).

Another alternative is to use a single rule at two different levels of subdivision; Simpson’s
rule is a popular choice in this approach.

The pair of rules should be progressive.

2. apply both rules  and  on the initial interval of integration .
3. If the resulting approximate values for the integral differ by more than the desired

tolerance, divide the interval into two or more subintervals and repeat the procedure on
each subinterval.

4. If the tolerance is met on a given subinterval, then no further subdivision of that
subinterval will be required.

5. If the tolerance is not met on a given subinterval, then the subdivision process is repeated
again, and so on until the tolerance is met on all subintervals.

Such a strategy leads to a nonuniform sampling of the integrand function that places many
sample points in regions where the function is difficult to integrate and relatively few points
where the function is easily integrated.

7.4 Other integration problems

7.4.1 Tabular data

If we only have limited points at which we know the value of . We can use piecewise cubic
spline interpolation.

7.4.2 Improper integrals

unbounded intervals:

Replace any infinite limit of integration by a finite value. 
Such a finite limit should be chosen carefully so that the omitted tail is negligible or
its contribution to the integral can be estimated. But the remaining finite interval
should not be so wide that an adaptive quadrature routine will be fooled into
sampling the integrand badly.

Transform the variable of integration so that the new interval is finite. Typical
transformations include  or . 
Care must be taken not to introduce singularities or other difficulties by such a
transformation.

G7 K15
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Use a quadrature rule, such as Gauss-Laguerre or Gauss- 
Hermite, that is designed for an unbounded interval.

singularities

adaptive quadrature is not a good idea: Even if the routine is lucky enough to avoid
evaluating the integrand at the singularity, an adaptive quadrature routine will
generally be extremely inefficient for an integrand having a singularity because
polynomials, which never have vertical asymptotes, cannot efficiently approximate
functions that do (recall that our error bounds depend on higher derivatives of the
integrand, which will inevitably be large near a singularity).

The better solution is to remove the singularity analytically by a transformation,
which is not always so trivial to find

7.4.3 Double integrals

The only viable method is Monte Carlo integration (see infra).
Quadrature rules become exponentially expensive.

7.5 Numerical differentiation

For a function that has discrete values, fit a polynomial and calculate it's derivative analytically.

For smooth functions, there are other techniques:

7.5.1 Finite difference approximations

These are based on the Taylor expansions 

and 

7.5.1.1 First derivative

Solving the first series for , we obtain the forward difference formula 

This approximation is first-order accurate since the dominant remainder of the series is 
.

Similarly, we obtain the backward difference formula from the second series: 

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)
6

h3 + ⋯

f(x − h) = f(x) − f ′(x)h +
f ′′(x)

2
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6

h3 + ⋯

f ′(x)
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f(x + h) − f(x)

h
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h
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Subtracting the second series from the first gives the centered difference formula 

which is second-order accurate.

7.5.1.2 Second derivative

Finally, adding the two series together gives a centered difference formula for the second
derivative 

which is also second-order accurate.

7.6 Richardson extrapolation

We make the value of the integral/derivative a function of the step size, and calculate its
limiting value as we take the step size to zero.

Let  denote the value obtained with step size , using a method for which we know the
scaling behavior as  (i.e. the order of the method).

Starting from

as  for some  and , with .

Suppose that we have computed  for two step sizes, say,  and  for some positive integer 
. 
Then we have

and

This system of two linear equations in the two unknowns  and  is easily solved 
to obtain

Thus, the accuracy of the improved value,  , is  rather than .
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If  is known for several values of , then the extrapolation process can be repeated to
produce still more accurate approximations, up to the limitations imposed by finite-precision
arithmetic.

7.6.1 Romberg integration

For any integer , let  denote the approximation to the integral  
given by the composite trapezoid rule with step size . 
Then for any integer , , we can recursively define the successive extrapolated values

which form a triangular array

So given , we can get better results by extrapolating.

7.7 Summary

Newton-Cotes Quadrature

Midpoint rule, Trapezoid rule and Simpson's rule
In general, for any odd value of , an -point Newton-Cotes rule has degree one
greater than that of the polynomial interpolant on which it is based due to
cancellation of positive and negative errors.
The midpoint rule is about twice as accurate as the trapezoid rule, despite being
based on a polynomial interpolant of degree one less, the difference between the
midpoint rule and the trapezoid rule can be used to estimate the error in either of
them
Halving the length of the interval decreases the error in either rule by a factor of
about 1/8
Drawbacks:

The interpolation of a continuous function at equally spaced points by a high-
degree polynomial may suffer from unwanted oscillation, and as the number
of interpolation points grows, convergence to the underlying function is not
guaranteed.
it can be shown that every n-point Newton-Cotes rule with  has at least
one negative weight and that the sum of all weights tends to infinity as 
. Thus they are ill-onditioned
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The presence of large positive and negative weights also means that the value
of the integral is computed as a sum of large quantities of differing sign, and
hence substantial cancellation is likely in finite-precision arithmetic.

Clenshaw-Curtis Quadrature

The weights are always positive for any , and that the resulting approximate values
converge to the exact integral as .
The degree of an -point rule is only , which is well below the maximum
possible.

Gaussian Quadrature

In general, for each  there is a unique -point Gaussian rule, and it is of degree 
.

Gaussian quadrature rules have the highest possible accuracy for the number of
nodes used, but they are significantly more difficult to derive than Newton-Cotes
rules.
For any  the Gaussian nodes are symmetrically placed about the midpoint of the
interval; for odd values of  the midpoint itself is always a node.
nodes are usually irrational numbers even when the endpoints a and b are rational.
Gaussian quadrature weights and nodes are derived for some specific interval and
thus any other interval of integration must be transformed into the standard interval
for which the nodes and weights have been tabulated.
for ,  and  have no nodes in common (except for the midpoint when 
and  are both odd). Thus, Gaussian rules are not progressive.

Konrod Quadrature

Resolves the issue of Gauss Quadrature not being progressive.
The rule  is therefore of degree , whereas a true -point Gaussian
rule would be of degree .
They provide both high accuracy and a reliable error estimate.

Composite Quadrature

In principle, by taking  sufficiently large it is possible to achieve arbitrarily high
accuracy (up to the limit of the arithmetic precision) using a composite rule, even
with an underlying rule  of low degree, although this may not be the most
efficient lway to attain a given evel of accuracy.
Composite quadrature rules also offer a particularly simple means of estimating the
error by using different levels of subdivision, which can easily be made progressive.

Adaptive Quadrature
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Leads to a nonuniform sampling of the integrand function that places many sample
points in regions where the function is difficult to integrate and relatively few points
where the function is easily integrated.

Differentiation

Interpolation 
For data that is discrete or non-smooth
Finite difference approximations 
For smooth functions 
- forward and backward difference formrula are first order accurate 
- centered difference formula is second order accurate

Richardson Extrapolation

The extrapolation process can be repeated to produce still more accurate
approximations, up to the limitations imposed by finite-precision arithmetic.
Example: Romberg integration 
First, composite trapezoid rule with step size , then Richardson
extrapolation.

hk = (b − a)/2k



8 ODE's and BVP's

8.1 Introduction

8.2 Numerically solving ODE's

8.2.1 Euler Forward method

The simplest example of this approach is Euler’s method, for which the approximate solution at
time  is given by

Euler's method can be derived in several ways:

Finite diffference appoximation

If we replace the derivative  in the ODE  by a first-order forward difference
approximation (see notebook on integration and differentiation), we obtain an algebraic
equation

which gives Euler’s method when solved for y_{k+1} .

Taylor Series

Consider the Taylor series

Euler’s method results from taking  ,  , , and dropping terms of
second and higher order.

8.2.2 Accuracy and Stability

Rounding error , which is due to the finite precision of floating-point arithmetic
Truncation error (or discretization error), which is due to the method used, and which
would remain, even if all arithmetic were performed exactly
Global error is the cumulative overall error

where  is the computed solution at  and  is the true solution of the ODE passing
through the initial point (  , ).

Local error is the error made in one step of the numerical method,

tk+1 = tk + hk

yk+1 = yk + hkf(tk, yk)

y′(t) y′ = f(t, y)

yk+1 − yk

hk

= f(tk, yk)

y(t + h) = y(t) + hy′(t) + 1/2h2y′′(t) + ⋯

t = tk h = hk y′(tk) = f(tk, yk)

ek = yk − y(tk)

yk tk y(t)

t0 y0



Accuracy

The accuracy of a numerical method is said to be of order  if

Stability

Recall that a solution to an ODE is stable if perturbations of the solution do not diverge away
from it over time. Similarly, a numerical method is said to be stable if small perturbations do not
cause the resulting numerical solution to diverge away without bound.

Such divergence of numerical solutions could be caused by instability of the solution to the
ODE, but can also be caused by the numerical method itself, even when the solutions to the
ODE are stable.

8.2.3 Euler backward method

The simplest example is the Euler backward method

The backward Euler method is implicit because we must evaluate  with the argument 
before we know its value.

We can do this with a nonlinear solver, as we have seen previously.

Why do we do this?

The answer is that implicit methods generally have a significantly larger stability region than
comparable xplicit methods.

To determine the stability and accuracy of the backward Euler method, we apply it to the scalar
test ODE , obtaining

or

so that

.

Thus, for the backward Euler method to be stable we must have

lk = yk − uk−1(tk)

p

lk = O(hp+1
k )

yk+1 = yk + hkf(tk+1, yk+1)

f yk+1

y′ = λy

yk+1 = yk + hλyk+1

(1 − hλ)yk+1 = yk

yk = ( 1
1 − hλ

)
k

y0



which holds for any  when Re .

8.2.4 Stiffness

Stiffness is a concept that can be defined a number of ways. For us, the most meaningful way is
it correspondence to the physics behind the problems we are investigating.

If a system contains dynamics on very different timescales, like a slow relaxation towards a
certain equilibrium, but with rapid oscillations around it, or with very strongly damped
transients, then it is considered stiff.

Mathematically, a stable ODE  is stiff if its Jacobian 
matrix  has eigenvalues that differ greatly in magnitude.

Euler’s forward method, for example, is extremely inefficient for solving a stiff equation because
of its small stability region. The unconditional stability of the implicit backward Euler method,
on the other hand, makes it suitable for stiff problems.

8.2.5 Runge-Kutta methods

Runge-Kutta methods are single-step methods that are similar in motivation to Taylor series
methods but do not involve explicit computation of higher derivatives. 
Instead, Runge-Kutta methods replace higher derivatives by finite difference approximations
based on values of  at points between  and .

Runge-Kutta methods have a number of virtues.

To proceed to time , they require no history of the solution prior to time 
which makes them self-starting at the beginning of the integration
and also makes it easy to change the step size during the integration
These features also make Runge-Kutta methods relatively easy to program, which
accounts in part for their popularity.

In general, the approximate solution of the ODE

at time , given its value  on time , is obtained by taking  intermediate evaluations of  at
times ,

and then adding them to  with the correct weights :

1
1 − hλ
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These formulas can compactly be represented by a Butcher tableau as follows:

If the tableau only contains elements below the diagonal, than it corresponds to an explicit
solver. Otherwise it is an implicit solver.

For example:

Euler Forward

Euler Backward

4th order Runke-Kutta solver

8.2.5.1 Adaptive step size

Classical Runge-Kutta methods require a fixed step

When a solver contains not only a solution of order  but also a solution of , we
can use the difference between both solutions as an approximation of the error size  on the
solution. 
This error depends on the size of the time step , and given a certain error tolerance , it is
possible to suggest a  for the next time step which is a large as possible, while still maintaining
the level of accuracy required as follows:

These solvers can therefore use an adaptive step size.

yn+1 = yn + h
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A simple example of such a solver is Heun's method. 
In this method, the first order accurate solution is found using Euler's forward method

Afterwards, the second order solution is found:

The difference between both solutions is an estimate of the error.

The butcher tableau looks like this:

Probably the most used embedded pair method was developed by Dormand and Prince. This is
a 5th order accurate solver with a 4th order embedded error estimate.

8.2.6 First-same-as-last (FSAL) property

C onsider the Bogacki-Shampine method, which is a third order method with embedded
second order solution. 
This method seems to require 4 function evaluations per step.

However, contrary to Heun's method, in the Bogacki-Shampine method the last evaluation of
step  corresponds with the first evaluation of step  (which is shown as the identical lines
in bold), thus effectively reducing the number of evaluations per step to 3.

~yn+1 = yn + hf(t, yn)

yn+1 = yn +
h

2
(f(t, yn) + f(t + h, ~yn+1))

0
1 1

1
2

1
2

1 0

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 9209

339200
187
2100

1
40

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9

0
7
24

1
4

1
3

1
3

n n + 1



This property is called is the first-same-as-last (FSAL) property and makes this solver 4/3 times
more efficient compared to the case when it didn't have the FSAL property.

8.2.7 Performance

At first sight, it seems to pay off to implement increasingly complex and higher-order solvers. 
However, for each additional order, a number of extra evaluations per step are necessary, as
shown in the table below.

There also exists a theoretical limit which order can be achieved by a certain number of
evaluations per step.

Note that the Bogacki-Shampine(when not considering FSAL) and the Fehlberg methods appear
to be suboptimal, but this stems from the fact that they also have a lower order solution
embedded, which further increases the number of conditions their numbers in the Butcher
tableau have to fulfill, and consequently require more variables and thus more evaluations per
step.

A second point to take into account is the memory usage of these solvers. The Seventh order
Fehlberg method is only slightly faster than the Sixth order Fehlberg method, but uses 13
evaluations per step, as compared to 8. 
It thus requires almost twice the amount of memory. 
Especially in GPU-software, where the memory bandwidth often is a limiting factor, such
considerations need to be taken into account.

8.2.8 Extrapolation methods

Extrapolation methods are based on the use of a single-step method to integrate the ODE over
a given interval,  , using several different step sizes  and yielding results denoted
by . 
This gives a discrete approximation to a function , where .

An interpolating polynomial or rational function  is fit to these data, and  is then taken
as the approximation to .

This is the same as Richardson Interpolation

Extrapolation methods are capable of achieving very high accuracy, but they are much less
efficient and less flexible than other methods for ODEs, so they are used mainly when extremely
high accuracy is required and cost is not a significant factor.

solver Euler Heun12 RK3 Bogacki − Shampine23 RK4 Dormand − Prince45 Fehlb
#evaluations

step 1 2 3 4 4 6 8

O(solver) 1 2 3 4 5 6 7 8
#evaluations

step 1 2 3 4 6 7 9 11

tk ≤ t ≤ tk+1 hi

Y(hi)

Y (h) Y(0) = y(tk+1)

Ŷ(h) Ŷ(0)

Y(0)



8.2.9 Multistep methods

Whereas Runge-Kutta methods only use information of one previous point (i.e. a single step
method), Multistep methods use information at more than one previous point to estimate the
solution at the next point.

One of the most popular explicit multistep methods is the fourth-order Adams-Bashforth
method, which uses information of 3 previous time steps, next to the current one:

Derivation

This derivation considers a scalar function , but the results can be applied
componentwise to nonscalar functions as well.

We derive a multistep method of the form

To determine the 5 coefficients  and  we require that this formula
exactly integrates the first 5 monomials  and .

Because this method needs to work for any value of  and , we can
conventiently choosing  and .

It then follows that , ,  and , 

The first equation in the system thus becomes

From which it follows that . The remaining system of equations thus
reduces to

Which we can solve using linalg.solve (as seen in the linear systems notebook)
to find the coefficients of the Adams-Bashforth method.
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One of the most popular implicit multistep methods is the fourth-order Adams-Moulton
method, which uses information of 3 previous time steps, next to the current one:

Just like for single-step methods, implicit multistep methods are usually more accurate and
stable than explicit multistep methods, but they require an initial guess to solve the resulting
(usually nonlinear) equation for . 
A good initial guess is conveniently supplied by an explicit method, so the explicit and implicit
methods can be used as a predictor-corrector pair. 
One of the most used pairs is the Adams-Bashforth predictor and Adams-Moulton corrector
shown above.

A few properties of multistep methods worth knowing

How do we get initial steps? 
One strategy is to use a single-step method, which requires no past history, to generate
solution values at enough points to begin using a multistep method.

Changing step size is complicated, since the interpolation formulas are most conveniently
based on equally spaced intervals for several consecutive points, so multistep methods
are not idealy suited for adaptive step sizes.

A good local error estimate can be determined from the difference between the predictor
and the corrector.

Implicit methods have a much greater region of stability than explicit methods but must
be iterated to convergence to realize this benefit fully (e.g., a PECE scheme is actually
explicit, albeit in a somewhat complicated way).

A properly designed implicit multistep method can be very effective for solvingstiff
equations.

8.2.10 Multivalue methods

Multivalue methods are a direct extension of multistep methods which allow adaptive step sizes
(at the cost of more function evaluations per step and a more complicated implementation).

8.3 BVP's for ODE's

Differential equations have more than one solution, boundary conditions impose a single
unique solution.

The two-point boundary value problem for the second-order scalar ODE 

yk+1 = yk +
h

24
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yk+1

u′′ = f(t,u,u′)



with 

and boundary conditions

is equivalent to the first oder system of ODEs:

with 

and with separated boundary conditions

For the general first-order two-point boundary value problem

with  
and boundary conditions

let  denote the solution to the associated initial value problem with initial condition 
. 

For a given , the solution  of the IVP is a solution of the BVP if

8.3.1 Shooting method

Replaces a BVP with a sequence of initial value problems. 
The general first-order two-point boundary value problem is equivalent to the system of
nonlinear algebraic equations 

You can solve it by solving the nonlinear system  using a non-linear solver.

Let's take 

with 

and boundary conditions
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This is not an IVP, because we get  instead of . 
We can guess a value for the initial slope, solve the resulting IVP, and then check to see if the
computed solution value at  matches the desired boundary value, .

The motivation for the name shooting method should now be obvious: we keep adjusting our
aim until we hit the target.

For a second order BVP:

Thus, the nonlinear system to be solved is

where x is the initial value.

The first component of  will be zero if , and the initial slope  remains to be
determined so that the second component of  will be zero.

In effect, therefore, we must solve the scalar nonlinear equation in  ,

for which we can use a one-dimensional zero finder.

This method is conceptually simple and easy to implement, but has drawbacks:

it inherits the stability issues of an IVP (even though the BVP might be stable)
It is hard to get convergence, because the IVP might be ill-conditioned, or the IVP might
not exist for stome starting guess of the initial value (become unbounded).

u(a) = α

u(b) = β

u(b) u′(a)

t = b u(b) = β

g(y(a), y(b)) = [ ] = 0
y1(a) − α

y1(b) − β

h(x) = [ ]0
y1(a; x) − α

y1(b; x) − β

h(x) x1 = α x2

h(x)

x2

h2(α,x2) = y1(b;α,x2) = 0



We can get around this by diving the interval into a mesh and requiring continuity at the mesh
points (mulptiple shooting), but it results in a larger and more complicated system of nonlinear
equations to solve.

8.4 Summary

Euler methods 
Use a truncated Taylor expansion

Euler Forward
Easiest algorithm to implement
Inefficient for solving stiff ODEs

Euler Backward
Implicit methods have larger stability regions compared to explicit methods
can solve stiff ODEs efficiently

Runge-Kutta methods 
Use finite difference approximations of higher derivatives based on values between the
the points  and 

Self-starting at the beginning of the integration
Easy to change the step size during the integration
Easy to program
Fixed step

Adaptive step size 
Used when a solver contains a solution of order  and a solution of .

Heun's method 
Uses Euler forwards method and calculates a second order solution.
Dormand Prince 
5th order accurate solver with a 4th order embedded error estimate.

FSAL 
When the last evaluation of the previous step is the same as the first evaluation of the
next step. Makes this solver 4/3 times more efficient compared to the case when it didn't
have the FSAL property.

Bogacki-Shampine 
Third order method with embedded second order solution.

Performance

The higher order the better, but each order requires some new function evals. So there's a
theoretical limit on what order you can reach based on the number evals per step.

tk tk+1

O(N) O(N − 1)



Also important is the amount of memory high order solvers use, because GPUs often have
limited VRAM.

Extrapolation methods 
Same idea as Richardson interpolation

Capable of high accuracy (to machine precision)
Less efficient and les flexible
Only used when cost/time isn't a factor

Multistep methods 
Use information of more than one previous point to determine next point 
In general: 
- Need guesses for the first few points (single-step method can be used) 
- Are not ideal for adaptive step size (because most methods are based on equally spaced
intervals) 
- Implicit is generally more stable than explicit and can be used to solve stiff ODEs

Methods
Adams-Bashforth 
Use the 3 previous steps (next to the current one)

Explicit
Adams-Moulton 
Use the 3 previous steps (next to the current one)

Implicit
More stable than explicit method
Needs to guess the first few points, so often Adams-Bashforth and
Adams-Moulton is used as a predictor-corrector pair.

Multivalue methods 
Allow for adaptive step sizes in multistep methods

Shooting method 
Used to solve BVPs, we guess an intial slope.

Conceptually easy to implement

it inherits the stability issues of an IVP (even though the BVP might be stable).

It is hard to get convergence, because the IVP might be ill-conditioned, or the IVP
might not exist for stome starting guess of the initial value (become unbounded).

Multiple shooting 
subdiving the interval

A bit more stable
Requires a larger and more complicated nonlinear system



9 PDEs

9.1 Introduction

We seek to determine a 2d function , subjugated to some BCs or IVs.

Such a solution function u can be visualized as a surface over the relevant two-dimensional
domain in the  or  plane.

We denote the unknown solution function by , and we denote its partial derivatives with
respect to the independent variables by appropriate subscripts:

9.2 Classification and examples

Heat equation 

Wave equation 

Laplace equation 

Any second-order linear PDE of the form 

can be transformed into these three equations.

: hyperbolic, typified by the wave equation

: parabolic, typified by the heat equation

: elliptic, typified by the Laplace equation

Hyperbolic PDEs describe time-dependent, conservative physical processes, such as
convection, that are not evolving toward a steady state.

Parabolic PDEs describe time-dependent, dissipative physical processes, such as diffusion,
that are evolving toward a steady state.

Elliptic PDEs describe systems that have already reached a steady state, or equilibrium,
and hence are time-independent.

u

(t,x) (x, y)

u

ut = ∂u/∂t

uxy = ∂ 2u/∂x∂y

⋯

ut = uxx

utt = uxx

uxx + uyy = 0

auxx + buxy + cuyy + dux + euy + fu + g = 0

b2 − 4ac > 0

b2 − 4ac = 0

b2 − 4ac < 0



This is important, because o fparabolic PDEs have a smoothing effect that over time damps out
any lack smoothness in the initial conditions, whereas hyperbolic PDEs propagate steep fronts
or shocks undiminished, and discontinuities can develop in the solution even with smooth initial
data.

Systems governed by hyperbolic PDEs are in principle reversible in time, whereas parabolic
systems are not.

9.3 Solving time-dependent problems

Semidiscrete 
Discretize in space but let the time variable be continuous. You then get a system of ODEs
to solve.

Example: solving the heat equation with a semidiscrete method

Consider the equation , , . 
If we introduce spatial mesh points , , where 

, and replace the second derivative  with the finite
difference approximation

but leave the time variable continuous, then we obtain a system of ODEs

where . 
From the boundary conditions we know that,  and , and
from the initial conditions, that , 

We can therefore use an ODE method to solve the initial value problem for
this system. 
The foregoing semidiscrete system of ODEs can be written in matrix form
as

The Jacobian matrix  of this system has eigenvalues between 
and 0, which makes the ODE very stiff as the spatial mesh size  becomes
small. 

ut = cuxx 0 ≤ x ≤ 1 t ≥ 0

xi = iΔx i = 0, … ,n + 1

Δx = 1/(n + 1) uxx

uxx(t,xi) ≈
u(t,xi+1) − 2u(t,xi) + u(t,xi−1)

(Δx)2
, i = 1, … ,n

y′
i(t) =

c

(Δx)2
(yi+1(t) − 2yi(t) + yi−1(t)) , i = 1, … ,n

yi(t) ≈ u(t,xi)

y0(t) = 0 yn+1(t) = 0

yi(0) = f(xi) i = 1, … ,n

y′ =
c

(Δx)2
y = Au

⎡⎢⎣−2 1 0 ⋯ 0
1 −2 1 ⋯ 0
0 1 −2 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 −2

⎤⎥⎦A −4c/(Δx)2

Δx



This stiffness, which is typical of ODEs derived from PDEs in this manner,
must be taken into account in choosing an appropriate ODE method for
solving the semidiscrete system.

Fully discrete 
Make a meshgrid in time and space. Use finite difference approximations for all the
derivatives. You get a system of equations, which might be linear or nonlinear depending
on the underlying PDE. IVPs are solved by beginning with the initial values and integraitng
forward step by step in time. Such a procedure can be explicit or implicit.

Example: solving the heat equation with a fully discrete method

We define spatial mesh points , , where 
, 

and temporal mesh points ,  is chosen
appropriately.

We denote the approximate solution at mesh point  by  , where
we have used both a subscript and a superscript (the  is not an exponent)
to distinguish clearly between increments in space and time, respectively.

Using centered difference approximations for both  and  yields a
system of algebraic equations

which can be rearranged to give the explicit recurrence

9.3.1 Implicit methods

As with ODEs, a larger stability region that permits larger time steps can be obtained by using
implicit methods. For the heat equation, for example, applying the backward Euler method to
the semidiscrete system shown in the Heat equation example yields the implicit finite difference
scheme 

This scheme inherits the unconditional stability of the backward Euler method, which means
that there is no stability restriction on the relative sizes of  and .

xi = iΔx i = 0, 1, … ,n + 1

Δx = L/(n + 1)

tk = kΔt k = 0, 1, … $,where$Δt

(tk,xi) uk
i

k

utt uxx

uk+1
i − 2uk

i + uk+1
i

(Δt)2
= c

uk
i+1 − 2uk

i + uk
i−1

(Δx)2
, i = 1, … ,n

uk+1
i = 2uk

i − uk−1
i + c( Δt

Δx
)

2

(uk
i+1 + 2uk

i + uk
i−1)

uk+1
i = uk

i + c
Δt

(Δx)2
(uk+1

i+1 − 2uk+1
i + uk+1

i−1 ) , i = 1, … ,n

Δt Δx



Accuracy is still a consideration, however, and the fact that this particular method is only first-
order accurate in time still strongly limits the time step.

If instead we apply the trapezoid method we obtain the implicit finite difference scheme

This is called the Crank-Nicolson method and is unconditionally stable and is second-order
accurate in time as well as in space.

9.4 Solving time-independent problems

Just as time-dependent parabolic and hyperbolic PDEs are analogous to initial value problems
for ODEs, time-independent elliptic PDEs are analogous to boundary-value problems for ODEs,
and most of the solution methods for ODE BVPs carry over to elliptic PDEs as well.

For an elliptic boundary value problem, the solution at every point in the problem domain
depends on all of the boundary data (in contrast to the limited domain of dependence for time-
dependent problems), and consequently an approximate solution must be computed
everywhere simultaneously, rather than being generated step by step using a recurrence, as in
the previous examples.

9.4.1 Laplace equation

The Laplace equation is a special case of the Poisson equation, which in two space dimensions
has the form

where  is a given function defined on a domain whose boundary is typically a closed curve in 
, such as a square or circle.

If , then we have the Laplace equation.

There are numerous possibilities for the boundary conditions that must be specified on the
boundary of the domain or portions thereof:

Dirichlet boundary conditions, sometimes called essential boundary conditions, in which
the solution  is specified.
Neumann boundary conditions, sometimes called natural boundary conditions, in which
one of the derivatives  or  is specified.
Robin boundary conditions, or mixed boundary conditions, in which a combination of
solution values and derivative values is specified.

Example: solving the Laplace equation with a finite difference method 
Consider the Laplace equation on the unit square

uk+1
i = uk

i + c
Δt

2(Δx)2
(uk+1

i+1 − 2uk+1
i + uk+1

i−1 + uk
i+1 − 2uk

i + uk
i−1) , i = 1, … ,n

uxx + uyy = f(x, y)

f

R
2

f ≡ 0

u

ux uy



We define a discrete mesh in the domain, including boundaries. 
The interior grid points where we will compute the approximate solution
are given by

where in our example  and .

Next we replace the second derivatives in the equation with the standard
second-order centered difference 
approximation at each interior mesh point to obtain the finite difference
equations

where  is an approximation to the true solution  and represents
one of the given boundary values if  or  is  or .

Simplifying and writing out the resulting four equations explicitly, we
obtain

Writing these four equations in matrix form, we obtain

This symmetric positive definite system of linear equations can be solved
either by Cholesky factorization or by an iterative method, yielding the
solution

Note the symmetry in the solution, which reflects the symmetry in the
problem, which we could have taken advantage of and solved a problem
only half as large.

uxx + uyy = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

(xi, yj) = (ih, jh), i, j = 1, … ,n

n = 2 h = 1/(n + 1) = 1/3

ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j−1 − 2ui,j + ui,j+1

h2
= 0 , i, j = 0, … ,n

ui,j u(xi, yj)

i j 0 n + 1

4u1,1 − u0,1 − u2,1 − u1,0 − u1,2 =0
4u2,1 − u1,1 − u3,1 − u2,0 − u2,2 =0
4u1,2 − u0,2 − u2,2 − u1,1 − u1,3 =0
4u2,2 − u1,2 − u3,1 − u2,1 − u2,3 =0

Ax = = = = b

⎡⎢⎣ 4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

⎤⎥⎦ ⎡⎢⎣u1,1

u2,1

u1,2

u2,2

⎤⎥⎦ ⎡⎢⎣u0,1 + u1,0

u3,1 + u2,0

u0,2 + u1,3

u3,2 + u2,3

⎤⎥⎦ ⎡⎢⎣0
0
1
1

⎤⎥⎦x = =

⎡⎢⎣u1,1

u2,1

u1,2

u2,2

⎤⎥⎦ ⎡⎢⎣0.125
0.125
0.375
0.375

⎤⎥⎦



In a practical problem, the mesh size  would need to be much smaller to achieve acceptable
accuracy in the approximate solution of the PDE, and the resulting linear system would be much
larger than in the preceding example.

The matrix would be very sparse, however, since each equation would still involve at most only
five of the variables, thereby saving substantially on work and storage.

9.5 Summary

Any second-order linear PDE of the form 

can be transformed into these three equations.

: hyperbolic

typified by the wave equation
describe time-dependent, conservative physical processes, such as convection, that
are not evolving toward a steady state.

: parabolic,

typified by the heat equation
describe time-dependent, dissipative physical processes, such as diffusion, that are
evolving toward a steady state.

: elliptic,

typified by the Laplace equation
describe systems that have already reached a steady state, or equilibrium, and hence
are time-independent.

Solving time-dependent problems (hyperbolic & parabolic)

Semidiscrete 
Discretize space but leave time continuous

Typically very stiff system of equations
Fully discrete 
Discretize time and space

can be explicit or implicit

implicit methods have the usual benifits: 
-when using Euler backward: 
- unconditional stability 
- not that accurate (only first order)

when using Crank-Nicolson (trapezoid method for finite difference schemes)

h

auxx + buxy + cuyy + dux + euy + fu + g = 0

b2 − 4ac > 0

b2 − 4ac = 0

b2 − 4ac < 0



unconditional stability
second order accurate

Solving time-independent problems (elliptic) 
We must calculate the entire solution at once because all data depends on all other data. 
We can use fully discrete methods similarly to time-dependent problems

Types of boundary conditions:

Dirichlet boundary conditions, sometimes called essential boundary conditions, in
which the solution  is specified.
Neumann boundary conditions, sometimes called natural boundary conditions, in
which one of the derivatives  or  is specified.
Robin boundary conditions, or mixed boundary conditions, in which a combination
of solution values and derivative values is specified.

u

ux uy



10 FFT

10.1 DFT

10.1.1 Definition

Given a sequence , its discrete Fourier transform (or DFT), is the sequence 
 given by 

where

for the (or rather one particular)  root of unity, meaning that .

Also note the effect of complex conjugation: .

This can be written in matrix notation as  where the entries of the symmetric Fourier
matrix  are given by 

The inverse of  is given by .

Short Proof

In the last step, we made use of .

The inverse DFT thus reads

10.1.2 Frequencies

x = [x0, … ,xn−1]T

y = [y0, … , yn−1]T

ym =
n−1

∑
k=0

ωmk
n xk, ∀m ∈ {0, 1, … ,n − 1}

ωn = cos(2π/n) − i sin(2π/n) = e−2πi/n

nth ωn
n = 1

ω∗
n = ω−1

n = ωn−1
n

y = Fnx

Fn

{Fn}mk = ωmk
n

Fn F−1
n = (1/n)FH

n

{FnF−1
n }mm =

1
n

n−1

∑
k=0

ωmk
n (ω∗

n)km = 1

{FnF−1
n }mℓ =

1
n

n−1

∑
k=0

ωmk
n (ω∗

n)kℓ =
1
n

n−1

∑
k=0

ω
(m−ℓ)k
n =

1
n

1 − ω
n(m−ℓ)
n

1 − ωm−ℓ
n

= 0

ωn
n = 1

xk =
1
n

n−1

∑
m=0

ω−km
n ym

=
1
n

n−1

∑
m=0

ym[cos(2πmk/n) + i sin(2πmk/n)] ∀ k ∈ {0, 1, … ,n − 1}



In the definitions of the (inverse) DFT, the frequency is represented by an dimensionless integer
index , which seems to have the wrong unit. 
It is implicitly assumed that the samples  are taken at regular (time) steps

where  is called the sampling rate. 
Put differently,

With that choice, the sine and cosine basis functions, can be written as a function of time:

As soon as a sampling rate  is assumed, the index  corresponds to a genuine frequency 
.

Note that one may also sample in a spatial domain instead of the time domain, in which case
the index  corresponds to a wavenumber instead of a frequency.

Because , where  is an arbitrary integer, and , you can also discuss
negative frequencies. Most often, the frequencies are given in lowest absolute value, or

In the sequence of frequencies shown above, the highest one is . 
In the limit of many samples, or for any even number of samples, the highest frequency always
becomes , which is known is the Nyquist frequency.

If the underlying time-dependent function, of which  are samples, contains relevant
fluctuations at frequencies above , it will be impossible to discern them from lower-
frequency fluctuations. 
The reason is that, on the sampling grid, the basis function  is indistinguishable from 

, where  is an arbitrary integer.

In practice, this means that the sampling frequency should at least twice the highest relevant
frequency of the underlying function. This is known as the Nyquist-Shannon sampling theorem.

The lowest of all frequencies is always zero (in  or ). 
The corresponding coefficient of the DFT is simply the sum of all values  and is called the DC
(direct current) component.

Note that a constant shift of all  will only affect the DC component.

10.1.3 DFT of a real sequence

m

xk

tk = t0 + k/fs.

fs

k = (tk − t0)fs.

ω−mk
n = cos(2πmk/n) + i sin(2πmk/n)

= cos( 2πm
n

(tk − t0)fs)+ i sin( 2πm
n

(tk − t0)fs)

fs m

(fsm)/n

m

ω−mk
n = ω

(ℓn−m)k
n ℓ ωn

n = 1

[0,
fs

n
,

2fs
n

, … ,
⌈n/2⌉fs

n
,

(⌈n/2⌉ − n)fs
n

, … ,
−2fs
n

,
−fs

n
, ]

⌈n/2⌉fs/n

fs/2

xk

fs/2

ωmk
n

ω
(ℓn+m)k
n ℓ

Hz m−1

xk

xk

https://en.wikipedia.org/wiki/Nyquist_frequency
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem


The DFT of a sequence (even a real sequence) is in general complex. This is not something to
worry about, as the inverse DFT will take us back to the real domain.

The DFT of a real sequence of length  has 2  real and imaginary parts, but still contains only 
independent pieces of information. 
This can be understood as follows: for each basis function , there is another basis function 

, which is just its complex conjugate. 
To represent a real sequence , the DFT must adhere to . 
This has a few implications for real sequences:

 is real.
When  is even,  is also real.
When  is odd,  may still be complex.

In summary, the second half of a DFT of a real squence is redundant.

10.2 FFT algorithm

We can exploit certain symmetries and redundancies in the definition of the DFT to calculate it
efficiently, with a cost scaling like  instead of .

Consider the first few Fourier matrices: 

Additionally let  be the permutation matrix, which separates the odd and even
subsequences:

and  the diagonal matrix

With these matrices, we can rearrange  such that each block is a diagonally
scaled version of .

n n n

ω−km
n

ω
k(n+m)
n = ωkm

n = (ω∗)kmn
x ym = y∗

n−m

y0

n yn/2

n y(n+1)/2

O(n log(n)) O(n2)

F1 = 1

F2 = [ ]1 1
1 −1

F4 =

⎡⎢⎣1 1 1 1
1 −i −1 i

1 −1 1 −1
1 i −1 −i

⎤⎥⎦P4

P4 =

⎡⎢⎣1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎦D2

D2 = diag(1,ω1
4) = [ ]1 0

0 −i

F4

F2



In general,  is the permutation that groups the even-numbered columns of  before the
odd numbered columns and

Thus, to apply  to a sequence of length , we merely need to apply  to its even and odd
subsequences and scale the results by . 
This recursive divide-and-conquer approach is called the fast Fourier transform and can be used
to recursively calculate the DFT of sequences of any length (that is a power of 2).

FFT has some limitations:

The input sequence needs to be equally spaced (although this sometimes can be
mitigated using interpolation).

The input sequence is assumed to be periodic (resulting from the definition of the DFT,
which tries to transform the data in a linear combination of sines and cosines).

In signal processing, the discrete cosine transform (DCT) is often used
instead of DFT. 
It does not assume the input is periodic, making it more broadly
applicable. 
Furthermore, the DCT of a real signal is also real, making the output more
intuitive.

The sequence is assumed to be a power-of-2 in length (specific to our algorithm).

The FFT can be generalized to handle sequences of arbitrary length, not
only powers of 2. 
The general FFT algorithm does not only split a sequence into two. 
Instead, it partitions a sequence in  subsets, where  is the smallest
prime factor of the length of a sequence, at the current recursion level. 
So in general,  may vary across different levels of recursion. 
At each level, an -fold DFT must be computed with conventional matrix-
vector multiplication.

This shows that the FFT, as discussed here, will be slow for long sequences
whose length is a prime number. 
For such cases, more advanced implementations exist to efficiently handle

F4P4 = = [ ]
⎡⎢⎣1 1 1 1

1 −1 −i i

1 1 −1 −1
1 −1 i −i

⎤⎥⎦ F2 D2F2

F2 −D2F2

Pn Fn

Dn/2 = diag(1,ωn, … ,ω(n/2)−1
n )

Fn n Fn/2

±Dn/2

M ≥ 2 M

M

M



sequences whose lengths are prime numbers. 
These advanced algorithms still result in an  scaling, but with a
much larger prefactor, compared to the algorithm discussed here.

10.3 Applications

10.3.1 Signal processing

Analyse which frequencies are in a certain discrete set of data, remove certain frequencies
(active noise cancellation), ...

10.3.2 Convolutions

The discrete circular convolution of two periodic sequences  and  of length  is defined as

The periodicity means that  and . Still, the arrays in computations only
contain values for only one period.

This operation is equivalent to multiplication by a circulant matrix

Such a matrix is diagonalized by the DFT, thus:

For this reason, it is more efficient to use the FFT algorithm to transform the inputs to the
frequency domain, compute one pointwise multiplication, and transform the result back to the
time domain.

10.3.3 Autocorrelation

The autocorrelation of a real sequence  expresses the similarity between a sequence and a
delayed copy of itself. 
It is defined as 

O (n log(n))

u v n

{u ∗ v}m =
n−1

∑
k=0

vkum−k, ∀m ∈ {0, 1, … ,n − 1}.

vk = vk+n uk = uk+n

=

⎡⎢⎣ z0

z1

⋮
zn−2

zn−1

⎤⎥⎦ ⎡⎢⎣ u0 un−1 un−2 ⋯ u1

u1 u0 un−1 ⋯ u2

⋮ ⋱ ⋱ ⋱ ⋮
un−2 ⋯ u1 u0 un−1

un−1 ⋯ u2 u1 u0

⎤⎥⎦ ⎡⎢⎣ v0

v1

⋮
vn−2

vn−1

⎤⎥⎦=

⎡⎢⎣ ẑ0

ẑ1

⋮

ẑn−2

ẑn−1

⎤⎥⎦ ⎡⎢⎣û0 0 ⋯ ⋯ 0
0 û1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 ûn−2 0
0 ⋯ ⋯ 0 ûn−1

⎤⎥⎦ ⎡⎢⎣ v̂0

v̂1

⋮

v̂n−2

v̂n−1

⎤⎥⎦y



We recognize that this is a convolution of the sequence with a reversed copy of itself, i.e. 
instead of , and thus can be calculated efficiently using FFTs as

where  denotes a complex conjugate. The complex conjugation is due to the reversal of the
second convolution argument in the time domain.

If we want to get the autocovariance instead of the autocorrelation, we need to demean (i.e.
subtracting the mean of the sequence) the sequence:

It is also common to further divide by the variance of the sequence, which is conveniently
calculated from the first entry in the Fourier transformed sequence.

(There is not proper name for the latter quantity. It is often called autocorrelation or
autocovariance, while it is actually neither.)

10.3.4 Fast polynomial multiplication

To find the coefficients of the product of two polynomials , we need to:

calculate all the pair-wise products of their respective terms,
group these products by the order of the resulting mononomial,
and sum the products within each group.

When we write the coefficients as vectors  and  (ordered from lowest order to largest; i.e. the
constant term first), and append zeros such that the vectors have a dimension larger than the
degree of  + the degree of , we can write the polynomial product as a convolution, where
the coefficients of their product  are given by: 

We saw earlier that we can calculate this in an efficient way using Fast Fourier Transforms: 

10.4 Summary

DFT 
Used to get frequency data from time/spatial data

The highest frequency which you can detect is the Nyquist frequency 

Rℓ =
n−1

∑
k=0

ykyk−ℓ ∀ l ∈ {0, 1, … ,n − 1},

yk−ℓ

yℓ−k

R = F
−1 (F(y)(F(y)∗)) = F

−1 (∥F(y)∥2)

∗

K = F
−1 (∥F(y − y)∥2)–

ρ =
K

σ2
y

f(x) = f1(x) ⋅ f2(x)

f1 f2

f1 f2

f

f = f1 ∗ f2

f = F
−1(F(f1)F(f2))

⌈n/2⌉fs/n



The frequency-0 component is always the sum of the input data (the DC
component)

FFT
Uses a divide and conquer strategy to split the Fourier transform in multiple factor-of-2
smalller DFTs, such that the computational complexity is 

Input needs to be equally spaced 
Can be solved by interpolation
Input needs to be periodic 
One can also use DCT (discrete cosine transform), which doesn't have such a
requirement.
Input needs to be power-of-2 in length 
You can generalize it to abritrary lengths, but cost will increase

Applications
Signal processing
Convolution
Auto-correlation
Efficient polynomial multiplication

O(n logn)



11 Monte Carlo

11.1 Pseudo-random-number-generators (PRNGS)

Computer hardware is designed to carry out purely deterministic arithmetic operations. 
Any computational result is therefore not truly random. 
Nevertheless, one may design algorithms that produce a sequence of seemingly uncorrelated
numbers.

PRNGs generally contain:

1. A seed, which determines the entire random sequence.

2. The algorithm has an internal state, which is initialized with the seed and is updated after
a new number is generated. 
Advanced PRNGs conceptually extend the state in several ways:

In general, the state can be an array of numbers, or a bit (0 or 1) array of some size.
When the seed contains too few bits of information, it can be padded with other
values to fill up the initial state.
The random number generated at each sequence may be a function of the state,
rather than being equal to the state in the simple case of LCG.

3. A recurrence relation is used to derive the next state from the current one.

4. Fixed parameters appearing in the algorithm.

PRNGs have the following properties

1. The sequence is deterministic: repeating the calculation with the same seed and
parameters gives the same result.

2. There is only a limited number of pseudo-random values. 
The upper limit is given by , where  is the number of bits used to represent the state. 
In practice, algorithms have fewer different random numbers:

The algorithm may limit the interval of the pseudo-random numbers by
construction.
Less obviously, the recurrence relation may not be able to visit all possible values.

3. Due to the previous points, pseudo-random sequences must be periodic (possibly after
some initialization phase). 
When the same state is encountered as before, all subsequent states will be repeated as
well. 
Because the number of states is limited, it is unavoidable that, after some time, the same
state appears again. 
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PRNGs are in practice designed with well-defined periods and without any initialization
phase.

What we want from PRNGs

1. The pseudo-random numbers should be uniformly distributed.

Ideally, all possible states in a sequence can be visited (from any seed).
Several isolated periodic pseudo-random subsequences may exist in the space of all
states.

2. There should be no apparent statistical correlations between subsequent values.

A minimal requirement is that the sequence has a long periods, ideally much longer
than the amount of random numbers needed in any application.
Also after differentiating the sequence, no obvious correlation should appear. For
example, the spacing between two subsequent random numbers should also be
pseudo-random.
Also when generating -dimensional vectors of random numbers, these should be
uniformly distributed over their space.

These can be tested by pen and paper or PRNG testing suites.

The most modern techinque is Xorshift

11.1.1 Xorshift

They use bit-wise operators:

A complete exposition of the history of PRNG development goes beyond the scope of this
course.
It is however worth looking at one popular family of modern PRNGs, namely the Xorshift
methods by Marsaglia.

Modern algorithms often make use of binary operators such as xor and shift, because these
are computationally efficient:

or is implemented in Python with the operator |. It applies the bitwise or to a pair of
integers. 
For every corresponding pair of bits, or is computed as follows:

In1 In2 Out

0 0 0

0 1 1

1 0 1

N

https://en.wikipedia.org/wiki/Xorshift


In1 In2 Out

1 1 1

When applied to integer numbers, | has the following effect.

Python Decimal Binary

a 5 0101

b 12 1100

a \| b 13 1101

xor is implemented in Python with the operator ^. It applies the bitwise exclusive or to a
pair of integers. 
For every corresponding pair of bits, xor is computed as follows:

In1 In2 Out

0 0 0

0 1 1

1 0 1

1 1 0

When applied to integer numbers, ^ has the following effect.

Python Decimal Binary

a 5 0101

b 12 1100

a ^ b 9 1001

shift shifts all the bits in the binary representation of an integer to the left or the right. 
Left and right shifts are implemented in Python with the << and >> operators, respectively. 
For example:

Python Decimal Binary

5 00101

5 << 1 10 01010

5 << 2 20 10100

5 >> 1 2 00010



Shifting to the left multiplies by 2, while shifting to the right is a division by 2. 
Whenever bits are shifted out of the register, they are discarded.

bitroll is not a low-level operation (and has no official name either), but is popular in
modern PRNGs. 
It combines two shift operators to permute bits in an binary number. 
The following table contains some examples for 4-bit integers:

Input Decimal roll Output Decimal

0010 2 1 0100 4

0101 5 1 1010 10

1001 9 1 0011 3

0011 3 2 1100 12

0011 3 3 1001 9

For Monte Carlo methods, Xorshift methods (and many others) are practically sufficient and
have a low computational cost. 
An older popular method is the Mersenne-Twister algorithm, proposed in 1997, but both its
computational performance and quality of randomness are outperformed by more recent
algorithms.

Because the recurrence relations are inherently serial, one cannot simply generate random
numbers in parallel. 
Hence, for the sake of computational efficiency, PRNGs are typically implemented in low-level
code (not Python). 
Vectorization and parallelism is sometimes used to produce multiple streams of parallel random
numbers of high-performance applications.

Besides Monte Carlo, another major application of random numbers is cryptography. This
application comes with additional algorithm requirements, generally related to the predictability
of pseudo-random sequences.

11.1.2 Transformations of univariate continuous distributions

Uniformly distributed numbers can be transformed, to sample other continuous univariate
distributions. Two common methods are mentioned here for the sake of completeness:

Inverse transform sampling. Given a random variable  uniformly distributed over , it
can be transformed to , where  is the cumulative distribution of the
quantity .

The Box-Muller transform is an efficient method for sampling a standard normal
distribution.

X [0, 1]

Y = F −1
Y (X) Fy

Y

https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform


(See statistics and VFR for more info)

11.2 Monte Carlo basics

The Monte Carlo method relies on the following identity from statistics:

where:

 is a stochastic vector in .
 is an (ordinary) vector in .

 is the probability density.
 is the probability of finding a sample point  in a region of size  around .

 can be any function .
The integral is taken over the entire domain where  is non-zero.

 stands for "the expectation value, assuming  is distributed according to the
probability density .

For many applications, the function  is scalar. 
For several examples below, also  and  are just scalar quantities.

With the above identity, one may approximate the integral in the right-hand side, just by taking 
 sample points  from the distribution , computing all  and averaging over all

results.

As the expectation value is just the average for discrete data.

11.2.1 Error estimation

The variance on the Monte Carlo estimate is

where we made use of the variance of a linear combination of two stochastic quantities:

where  stands for the covariance of two stochastic quantities. 
We get a  prefactor for bringing the varianc into the multiplication, and pick up an  to
bring it in the sum, so the prefactor remains . For the variance on the MC estimate, no
covariance is taken into account, because we assume independent sample points.

The standard error on the MC estimate is simply the square root of the variance:

E[g(X)] = ∫ g(x)pX(x) dx

X R
n

x R
n

pX(x)

pX(x) dx X dx x

g(⋅) x ↦ g(x) ∈ R
m

pX(x)

E[⋅] X

pX(x)

g

X x

N Xi pX g(Xi)

∫ g(x)pX(x) dx ≈
1
N

N

∑
i=1

g(Xi) = g(Xi)
–

VAR [ 1
N

N

∑
i=1

g(Xi)] =
1
N

VAR[g(Xi)]

VAR[aX + bY] = a2VAR[X] + b2VAR[Y] + 2abCOV[X, Y]

COV[X, Y]

1/N 2 N

1/N



The error decreases proportionally to  with increasing . 
Hence, by taking a sufficiently large sample, the error can be made arbitrarily small.

Put differently, the number of required points is proportional to . 
Note that this scaling is independent of the dimension of  and remains the same for high-
dimensional integrals. 
This is very different from conventional quadrature methods, where the number of required
points scales exponentially with the dimension of .

Numerical estimates of the standard error can be derived from an unbiased estimate of the
variance:

11.2.2 Pitfalls

For some choices of , it becomes infeasible to converge the MC estimate. 
In qualitative terms, this happens when:

 is virtually zero in regions where  is significant, and
 becomes very large where the probability density nearly vanishes.

In such cases, outliers of the distribution will have a large contribution to the average. 
In the best case, this results in a large sampling error. 
In the worst case, no such outliers are encountered in the sample and the error is not noticed.

A more formal way of describing the problem is that MC has convergence issues when there is
a large variance on . 
The errors still scale proportionally with , but the prefactor, , is huge. 
In such cases, also the error on the sampling estimate of this prefactor is large (for the same
reason), making it difficult to detect this pitfall empirically.

To solve this problem, one should construct another , such that its distribution has no
outliers, which is not always straightforward.

11.2.3 Monte Carlo integration

where the probability density is missing at first sight. 
The integral runs over a finite domain  instead of over the entire space.

For this case, one may always insert a uniform distribution and divide out its normalization:

Std. Err. = √ VAR[g(Xi)]
N

1/√N N

1/(Std. Err.)2

X

X

VAR [g(Xi)] ≈
1

N − 1

N

∑
i=1
(g(Xi) − g(Xi))

2–

g

g pX

g

g(Xi)

1/√N √VAR[g(Xi)]

g(Xi)

I = ∫
Ω
g(x) dx

Ω



where  is the volume of the domain (and the inverse of the normalization constant of the
uniform distribution). 
For this case, the Monte Carlo method is essentially a quadrature method with equal weights
and randomized grid points.

Monte Carlo integration is numerically well-behaved as long as  varies smoothly. 
In line with the more general case, it may become problematic when  is negligible nearly
everywhere in the domain. 
For such ill-posed cases, adaptive methods such as the MISER algorithm have been developed
to focus on subdomains where  is more informative.

11.3 Discrete Markov-chain Monte Carlo methods

For complex multi-variate distributions, drawing samples is not trivial. For this requirement,
markov chains can be used.

11.3.1 Definition of Markov Chain

A discrete Markov chain is a stochastic process, i.e. a sequence of stochastic quantities , in
which the probability of observing  is only determined by:

1. the previous state , and
2. the index .

Formally, one may write

One can interpret  as a conditional probability density, and it is often called the transition
probability. This notation is completely retarded though, as we only consider discrete markov
chains here, thus the integral will be just a sum over the elements  with a weight ,
which is the probability of going from  to  if we step from  to .

A more accurate representation of what's happening here is the diagram below in three
dimensions

I = VΩ ∫
Ω
g(x)pX U(a,b)(x) dx

VΩ

g

g

g

{Xk}

xi+1

xi

i

pXi+1(xi+1) = ∫ Ti→i+1(xi+1|xi) pXi
(xi) dxi

Ti→i+1

xi Ti→i+1(xj|xi)

xi xj i i + 1

https://en.wikipedia.org/wiki/Monte_Carlo_integration#MISER_Monte_Carlo


state i+1state i

T11

T12

T13

T21

T22

T23

T31

T32

T33

y1

y2

y3

x1

x2

x3

Some remarks:

It is important that the function  is not explicitly dependent on older states such as 
 (You can't have arrows from x-s older than state ). 

Such a dependency would result in a non-Markov chain.
When the function  is the same for all , the chain is called time-homogeneous and
one may just write . 
This doesn't mean that the values of  are the same for every  and ! It just means that
each  doesn't change with time.
The adjective discrete means that the states are labeled by a discrete index . 
In continuous Markov chains, the states are labeled by a continuous variable, e.g. a time .

An important property of the transition probability is the following normalization:

namely, the probability of going anywhere from a node in state i is 1 (or the sum of outgoing
arrows in  for each  should be 1).

Proof. One should simply require that the probability density of state  is
properly normalized when state  is a Dirac delta distribution.

Ti→i+1

xi−1 i

Ti→i+1 i

T

Tij i j

Tij

i

t

∫ T (xi+1|xi) dxi+1 = 1

xk
i k

i + 1

i



How this proof works is:

we start from the fact that the state i+1 should be normalized (the total
probability of all the nodes in state i+1 should be one)
we then assume that for each node in i+1 all the probability came from
one node in state i, called , and the proof follows.

Note that this also shows how to sample a Markov chain in practice. 
At the point that we have a sample point , its position is fixed, as described by
the Dirac delta function, and the next point is simple generated by sampling the
transition probability in which  appears as a parameter.

11.3.2 Stationary distribution of a discrete Markov chain

As mentioned above, we assume that the Markov chain is time-homogeneous. All transition are
described by the same transition probability .

Consider the case of a random variable at a certain time of the markov chain, which is sampled
by the distribution . IF this distribution has the following property:

In words, the transition to the next state leads to the same probability density, then  is called a
stationary distribution of the chain.

One can therefore consider the chain as a random number generator for its corresponding
stationary distribution:

1. Draw an initial sample point with a non-zero probability in the stationary distribution: . 
In this case, one can claim that the initial sample point is drawn from the stationary
distribution, even if it is improbable.

2. Generate a next sample point, using the transition probability . 
Because the previous sample point could have been drawn from the stationary
distribution, the current sample is also a valid sample point.

3. Repeat step 2, now with , , ... until you have enough samples.

The stationary distribution does not always exist.
When a stationary distribution exists, it is not necessarily unique.

11.3.3 Metropolis-Hastings algorithm

Finding the stationary distribution of a chain is generally challenging. 
However, the reverse is relatively easy. For a given stationary distribution, there is an

1 = ∫ pXi+1(xi+1) dxi+1 = ∬ T (xi+1|xi) δ(x0
i − xi) dxi+1 dxi = ∫ T (xi+1|x0

i ) dxi+1

x0
i

x0
i

x0
i

T

p(x1)

∫ T (x2|x1)p(x1) dx1 = p(x2)

p

x0
1

T (x2|x0
1)

T (x3|x0
2) T (x4|x0

3)



uncountable infinite number of Markov chains. 
Once the Markov chain is defined, sampling the stationary distribution is trivial, as explained in
the previous section.

The most general approach for constructing a suitable Markov chain is the Metropolis-Hastings
algorithm. Many other methods can be seen as special cases of this general framework.

11.3.3.1 Global balance vs detailed balance

A stationary distribution satisfies the "global balance" condition, that is, after convolution
with the transition probability, the same probability is recovered.

This condition does not impose much structure on  and leaves plenty of freedom to
decide from where to where the transition probability displaces sample points.

A more restrictive requirement is called "detailed balance":

This can be interpreted as follows: for a stationary distribution, the following two
probabilities must be equal:

The probability density of finding a sample point at  and moving it to .
The probability density of finding a sample point at  and moving it to .

Or in our more intuitive understanding: The probability to go from a node  to a node 
should be the same as the probability to go from  to a node , (time is reversible, or 
is symmetric, whatever you like).

Both flows of sample points will compensate each other, such that  remains stationary.

One may also show that detailed balance is a sufficient condition for global balance.

Proof:

11.3.3.2 Derivation

The Metropolis-Hastings algorithm defines a Markov chain that satisfies detailed balance for
any given stationary distribution.

The transitions in Metropolis-Hastings Markov chain are constructed in two steps:

∫ T (x2|x1)p(x1) dx1 = p(x2)

T

T (x2|x1)p(x1) = T (x1|x2)p(x2)

x1 x2

x2 x1

xk xl

xl xk T

p(x2)

∫ T (x2|x1)p(x1) dx1 = ∫ T (x1|x2)p(x2) dx1 = p(x2)∫ T (x1|x2) dx1 = p(x2)



Generation step. A displacement of  to  is generated with a proposal distribution 
. It is important to note that this proposal distribution is not the same as the

probablity distribution we ultimately want to sample from. It's just the probability of
proposing a state  given state .

Acceptance or rejection step. After constructing  from , it is further assessed and
accepted with a probability . 
If not accepted, the next state is identical to the current.

The total transition probability is the product of these two probabilities: 
.

To find a correct expression for the acceptance probability, detailed balance is imposed:

and solved towards the ratio of acceptance probabilities:

The highest possible acceptance probabilities satisfying this equation are

This is called the Metropolis choice. This assures that always  or .
Either way the detailed balance condition is statisfied.

This expression becomes more intuitive when the proposal distributions become symmetric, i.e. 
. In that case, one gets:

This means the following:

A transition to higher probability density is always accepted.
A transition to lower probability density is accepted with a probability .

To apply this method, one must merely be able to compute the probability density up to an
unknown normalization factor. In practically all applications, this is possible.

11.3.3.3 Algorithm

Building on the above derivation, the Metropolis-Hastings algorithm works as follows:

1. Start with an initial state for which the (stationary) probability is non-zero. 
This more than likely will just be a PRN.

x1 x2

g(x2|x1)

x2 x1

x2 x1

A(x2, x1)

T (x2|x1) = g(x2|x1)A(x2, x1)

g(x2|x1)A(x2, x1)p(x1) = g(x1|x2)A(x1, x2)p(x2)

A(x2, x1)
A(x1, x2)

=
p(x2)
p(x1)

g(x1|x2)
g(x2|x1)
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p(x2)
p(x1)

g(x1|x2)
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)
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g(x1|x2) = g(x2|x1)
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p(x2)
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)
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2. Generate a step according with the proposal distribution . 
This distribution can for example be a uniform distribution of the current step +- 0.5 or a
normal distribution centered at the current step...

3. Compute the acceptance ratio

If this is larger than one, accept the step. 
If it is smaller than one, accept the step with probability . 
If the step is not accepted, the new state becomes equal to the old state.

4. Repeat steps 2 and 3 until the sample size is sufficient.

11.3.4 Closing remarks

The Markov chain exhibits a significant amount of burn-in. 
In the limit of very long MC chains, burn-in becomes negligible, but usually that is too
costly and one resorts to manual removal of the burn-in. 
This is often a subjective choice, for which automatic methods were proposed recently.

The Cauchy distribution is an interesting proposal distribution. 
Due to the heavy tails of the distribution, both large steps (exploration) and small steps
(refinement) are considered in one chain.

Instead of using a Cauchy distribution, one may also work with adaptive step sizes in the
proposal distribution. 
Naive approaches to control step size based on the acceptance rate of previous iterations,
may bias the stationary distribution. 
Use these with care. 
Specialized algorithms have been developed to deal with this problem specifically, e.g. the
Affine Invariant Markov Chain implemented in emcee is a good solution for when step
sizes are hard to set manually.

One can solve many physical problems with MCs:

"For which distribution of physical parameters is is a certain process or result observed?"

For such problems, the parameters can be found by coupling an MHMC
algorithm to a computer-controlled experimental setup. 
This approach is also used to discover new materials, crystallize proteins,
discover new pharmaceuticals, etc.

Besides MHMC, also genetic algorithms, particle swarm, and other
methods are popular for this purpose. Just keep in mind that they don't

g(x2|x1)

AR =
p(x2)
p(x1)

g(x1|x2)
g(x2|x1)

AR

https://doi.org/10.1021/acs.jctc.5b00784
https://emcee.readthedocs.io/en/stable/


have a stationary distribution, unless they are cast into an MHMC
framework.

"What is the distribution of model parameters that can explain a distribution of
measurements?"

This type of modeling is called Bayesian inference and goes far beyond the
scope of this section.

One important class of simulations is not considered in this section, namely simulations
of physical systems which are characterized by a probability density. These will be treated
in the Statistical Physics course.

11.4 Summary

Pseudo-random-number-generators

Contain:

a seed
an interal state
a reccurence relation on the state to create members
fixed parameters appearing in the algorithm

Have the following properties:

the sequence is deterministic (reproducible using the seed)
there's only a limited number of members (typically )
they must be periodic

We desire that they:

are uniformally distributed
dont contain statistical correlation

Examples

Linear congruential generators (LCG) 
Very old, don't use them
Mercenne-Twister algorithms 
Until recently the best way to generate PRNs
Xorshift methods 
more recent improvements that should be the industry standard 
E.g. xoshiro256
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Transforms 
Used to sample non-uniform distributions from a uniform generator: 
- Inverse transform sampling (for most distributions) 
- Box-Muller transform (for the normal distribution)

Monte carlo integration

Essentially "quadrature" with normalised weights and a randomly chosen samples.
The error decreases proportionally to  with increasing .
For some distributions, converge is difficult, e.g. when:

 is virtually zero in regions where  is significant, and
 becomes very large where the probability density nearly vanishes.

You can calculate any integral by substituting a uniform distribution and dividing out
its normalisation.
Monte Carlo integration is numerically well-behaved as long as  varies smoothly.
(For randgevallen, see MISER algorithm)

DMCMC 
Calculate MC integrals using Markov-chains, which allows us to sample from multi-variate
complex distributions

Metropolis-Hastings algorithm 
The Metropolis-Hastings algorithm defines a Markov chain that satisfies detailed
balance for any given stationary distribution.

1. Start with an initial state for which the (stationary) probability is non-zero. 
This more than likely will just be a PRN.

2. Generate a step according with the proposal distribution . 
This distribution can for example be a uniform distribution of the current step
+- 0.5 or a normal distribution centered at the current step...

3. Compute the acceptance ratio

If this is larger than one, accept the step. 
If it is smaller than one, accept the step with probability . 
If the step is not accepted, the new state becomes equal to the old state.

4. Repeat steps 2 and 3 until the sample size is sufficient.

The Markov chain exhibits a significant amount of burn-in.

The Cauchy distribution is an interesting proposal distribution.
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