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1 Linear algebra basics

Theorem 1.1. Let P̂ ∈ End(V) be a linear operator on a vector space V that
satisfies P̂ 2 = P̂ . Show that V = im(P̂ )

⊕
ker(P̂ ).

Proof. Choose a v ∈ V . Since P = P 2, we have Pv = P 2v and thus P (v−Pv) =
0. Therefore v − Pv = x for some x ∈ ker(P ). Thus v = Pv + x. This shows
that V = im(P) + ker(P). Now take a w ∈ im(P )∩ker(P ). Since w ∈ im(P ) we
have w = Pz for some z ∈ V . Applying P to both sides we get Pw = P 2z. But
since w ∈ ker(P ), we have 0 = Pw = P 2z = Pz = w. Thus im(P )∩ker(P ) = 0
and thus V = im(P )

⊕
ker(P ).

Theorem 1.2. Verify the block LDU decomposition by working out the block
matrix multiplication; then use this decomposition to give an expression for
det(A).

Proof. For this section look at the LDU decompostion in the notes (p49 in alt
course) (you will be given the expression on the exam). Verifying the LDU
decomposition is easy (just do the block matrix multiplication). We introduce
the Shur complement of A11 = A22−A21A

−1
11 A12, sometimes denoted as A/A11.

The Shur complement can now be used to calculate det(A). We have det(A) =
det(L)det(D)det(U) (note that: det(L) = det(U) = 1) = det(A11) det(A/A11)
[ = det(A22) det(A/A22). This is not necessary, but is obtained by permuting
the blocks 1 and 2. You are asked to give AN expression for the determinant,
so the first expression is perfectly valid] .

Theorem 1.3. Use the block LDU decomposition from the previous question to
find a block matrix expression for A−1.
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Proof. To find A−1 we calculate A−1 = U−1D−1L−1. (page 46 in the course
notes version 9).

A−1 = U−1D−1L−1

=

[
In1

−A−1
11 A12

0 In2

] [
A−1

11 0
0 (A22 −A21A

−1
11 A12)

−1

] [
In2 0

−A21A
−1
11 In2

]
=

[
A−1

11 +A−1
11 A12(A22 −A21A

−1
11 A12)

−1A21A
−1
11 −A−1

11 A12(A22 −A21A
−1
11 A12)

−1

−(A22 −A21A
−1
11 A12)

−1A21A
−1
11 (A22 −A21A

−1
11 A12)

−1

]

Theorem 1.4. Prove Woodbury’s inversion lemma (A + UCV )−1 = A−1 −
A−1U(C−1 + V A−1U)−1V A−1 by multiplying both sides with (A + UCV) and
show that you indeed obtain an equality. Ensure that the steps and the arithmetic
you use on the right hand side are clear.

Proof. It’s easy to see that the LHS is the identity matrix, so we will prove that
the RHS is also the identity matrix.

(A+ UCV )
[
A−1 −A−1U

(
C−1 + V A−1U

)−1
V A−1

]
=
{
I − U

(
C−1 + V A−1U

)−1
V A−1

}
+
{
UCV A−1 − UCV A−1U

(
C−1 + V A−1U

)−1
V A−1

}
=
{
I + UCV A−1

}
−
{
U
(
C−1 + V A−1U

)−1
V A−1 + UCV A−1U

(
C−1 + V A−1U

)−1
V A−1

}
=I + UCV A−1 −

(
U + UCV A−1U

) (
C−1 + V A−1U

)−1
V A−1

=I + UCV A−1 − UC
(
C−1 + V A−1U

) (
C−1 + V A−1U

)−1
V A−1

=I + UCV A−1 − UCV A−1

=I

Theorem 1.5. Use Woodbury’s inversion lemma from the previous question to
prove (A+B)−1 =

∑∞
k=0(−A−1B)kA−1.

Proof. Using Woodbury’s inversion lemma with U = V = In, and defining C =
B ∈ Fn×n:

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1

= A−1 −A−1(I +AB−1)−1

= A−1 −A−1B(A+B)−1

We see that we again have (A + B)−1. Repeating the process of filling in the
expression for (A+B)−1 we have an infinite sequence. Our end result will be:
(A+B)−1 =

∑∞
k=0(−A−1B)kA−1
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Theorem 1.6. Given a matrix A(x), the entries of which are functions of a
(scalar) variable x. Find an expression for the derivative of the inverse matrix,
dA−1

dx (x) in terms of A−1 (x) and dA
dx (x). You may use the expansion from the

previous question.

Proof. We begin by considering AA−1 = I. Taking the derivative of this ex-

pression with respect to x we get: d(AA−1)
dx = 0. Applying the product rule we

get that d(AA−1)
dx = dA

dxA
−1 + AdA−1

dx = 0. From this expression we find that
dA−1

dx = −A−1 dA
dxA

−1. Note that we have to apply the ordering of the product
rule very strictly since matrix derivation generally does not commute.

Theorem 1.7. Let W be an invariant subspace of a linear operator Â ∈ End(V);
show that it is also an invariant subspace of Â+ a1̂ with a ∈ F some scalar.

Proof. Pick a random w ∈ W . We know that Âw ∈ W . Next we apply Â+ a1̂
to w so that we have: (Â+ a1̂)w = Âw + aw ∈ W . Âw is an an element of W
and aw is an element of W since it is closed under multiplication with a scalar
so that W must be a invariant subspace of (Â+ a1̂).

Theorem 1.8. Show that ker(Â− λ1̂)k for some non-negative integer k ∈ N is
an invariant subspace of Â.

Proof. p.55

let U
(k)
λ = ker((Â−λ)k) with thus U

(0)
λ = 0 ⪯ U

(1)
λ = Vλ ⪯ U

(2)
λ ⪯ · · · ⪯ U

(k)
λ ⪯

. . .
which we know will saturate to a fixed subspace Uλ = U

(k≥sλ)
λ for all values

of k above a minimal value sλ. The space Uλ is known as the generalized
eigenspace. Shifting Â with a constant times the identity operator does not

affect the results from the above construction: each of the spaces U
(k)
λ are

invariant subspaces of Â, and so is the natural complement of the generalized

eigenspace, i.e. U
(c)
λ = im((Â− λ)sλ)

Theorem 1.9. Show that im(Â− λ1̂)k for some non-negative integer k ∈ N is
an invariant subspace of Â.

Proof. See theorem 1.8 for proof.

Theorem 1.10. Given two operators Â, B̂ ∈ End(V) that admit a spectral de-
composition (i.e., are diagonalisable) as Â =

∑
λ∈σÂ

λP̂λ and B̂ =
∑

λ∈σB̂
µQ̂µ.

If Â and B̂ commute, [Â, B̂] = 0, show that they admit a common spectral de-
composition (or thus, a basis in which they are simultaneously diagonal)

Proof. Given that we can construct the spectral projectors P̂λ of a diagonalisable
operator Â =

∑
λP̂λ as a polynomial of Â, it follows that if another operator

B̂ commutes with Â, then also [B̂, P̂λ] = 0̂ for all λ ∈ σÂ.

If also B̂ is diagonalisable with spectral decomposition B̂ =
∑

µ∈σB̂
µQ̂µ, then

3



it follows that [P̂λ, Q̂µ] = 0̂ for all λ, µ in the corresponding spectra. As a
consequence , the operators PλQµ are projectors with∑

λ,µ

PλQµ = (
∑
λ

Pλ)(
∑
µ

Qµ) = 1̂

and we can write the spectral decomposition of both operators as
Â =

∑
λ λP̂λ =

∑
λ λP̂λ(

∑
µ Q̂µ) =

∑
λ,µ λ(P̂λQ̂µ)

B̂ =
∑

µ µQ̂µ =
∑

µ µQ̂µ(
∑

λ P̂λ) =
∑

λ,µ µ(P̂λQ̂µ)
and we obtain a common spectral decomposition.

Theorem 1.11. Given linear operators Â, B̂ ∈ End(V ) which statisfy ÂB̂ +
B̂Â = 0̂. Let Â have an eigenvector v with an eigenvalue λ, i.e. Âv = λv. Show
that either B̂v = 0, or that Â also has an eigenvalue −λ.

Proof. If we multiply the equation times v, we find that:

(ÂB̂ + B̂Â)v = 0̂

ÂB̂v = −B̂Âv

ÂB̂v = −B̂λv

ÂB̂v = −λB̂v

We can easily see that if B̂v = 0 this would be correct.
It is also quite clear that Â has an eigenvalue −λ with eigenvector B̂v.

Theorem 1.12. Let the linear operator P̂ ∈ End(V ) be a projector, P̂ 2 = P̂ .
What is the spectrum of P̂?

Proof. If we denote the spectrum of P̂ as σ(P̂ ). To find the values we have to
find all α ∈ σ(P̂ ) such that αÎ − P̂ is not invertible. We can easily find that

(αÎ− P̂ )−1 = 1
α (Î+

P̂
α−1 ), this is only possible if α ̸= 0, 1. The spectrum is thus

σ(P̂ ) = {0, 1}.

Proof. (Alternative proof) If λ is an eigenvalue of P̂ than we have:

P̂ v = λv

P̂ 2v = P̂ v = λv = λP̂v = λ2v

So λ2 = λ. This is only possible if λ = 0 or 1.

Theorem 1.13. Let the linear operators P̂ , Q̂ ∈ End(V ) be projectors in such
a way that also P̂ + Q̂ is a projector. Show that this implies that P̂ Q̂ = 0̂ (hint:
the result of the previous two theorems can be useful).
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Proof. proof using the previous results: If P̂ + Q̂ is a projector, this means that
(P̂ + Q̂)2 = P̂ + Q̂ ⇒ P̂ 2 + Q̂2 + P̂ Q̂ + Q̂P̂ = P̂ + Q̂. We know that P̂ 2 and
Q̂2 are equal to P̂ and Q̂ respectively. So that P̂ Q̂ + Q̂P̂ = 0. from this we
can combine theorems 1.11 and 1.12 to say that: P̂ Q̂vλ = 0 for all eigenvectors
vλ of P (because the -λ case is excluded since -1 is not in the spectrum). Now
since projection operators are diagonalisable, we know that V admits a basis of
their eigenvectors, in other words: ∀v ∈ V : v = cλv

λ (using einstein summation
convention) s.t P̂ Q̂ = 0(in V)

(note that an alternative proof using contradiction exists, i refer you to dis-
cord for this one)

Theorem 1.14. Given a companion matrix

C =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

−p0 −p1 −p2 · · · − pn−2 −pn−1


write down the eigenvalue equation Cv = λv. If we normalize v such that
its first component v1 = 1, what are the other components vk for k = 2, . . . , n
of v and what equation does λ need to satisfy?

Proof. C is a companion matrix of some polynomial
∑

k pkz
k, the eigenvalue

equation is simply the characteristic polynomial.

if we normalize v1 the other components are then given by ṽk = vk

v1 s.t we have
a monic polynomial. The characteristic polynomial of the companion matrix is
then given by: ∑

k

pkλ
k (1)

If we find the roots of this equation, we find the eigenvalues.

Theorem 1.15. Given a Jordan block corresponding to an eigenvalue λ of size
4,

J
(4)
λ =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


compute exp(J

(4)
λ )
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Proof. For a general analytic function f(x) (to say that it has a Taylor series)
and a Jordan block of size k of an eigenvalue λ we know that

f(J (k)(λ)) =

k−1∑
n=0

f̃(Jk(0))n

where f̃ is defined as f(n)(λ)
n!

luckily the n’th derivative of exp is always exp s.t:

exp(J (4)(λ) =
exp(λ)

0!
I +

exp(λ)

1!
(J4(0)) +

exp(λ)

2!
(J4(0))2 +

exp(λ)

3!
(J4(0))3

this results in the final matrix:


eλ eλ eλ/2 eλ/6
0 eλ eλ eλ/2
0 0 eλ eλ

0 0 0 eλ


Theorem 1.16. Reconsider J

(4)
λ from the previous question, where now λ ∈

R≥0. Compute log(J
(4)
λ ).

Proof. Since here we are dealing with only positive eigenvalues, we dont need
to choose a branch cut.
saying now that λ = 0 is not an eigenvalue, we can simply make use of the taylor
series expansion: log(z) = log(λ+ (z − λ)) = log(λ) + log(1 + z−λ

λ ) to define:

log(Jk(λ)) = log(λ)I +

k−1∑
n=1

(−1)n+1 (J
(k)(0))n

nλn

(note that this also follows from the general expression in the previous theorem).

This results in the final matrix: log(J4(λ)) =


log(λ) 1

λ − 1
2λ2

1
3λ3

0 log(λ) 1
λ − 1

2λ2

0 0 log(λ) 1
λ

0 0 0 log(λ)


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2 Norms and inner products

Theorem 2.1. Let ∥vp∥ be the standard Hölder p-norm of the vector v ∈ Fn.
Find the lowest value of b such that ∥v∥1 ≤ b∥v∥2 is satisfied for all v ∈ Fn.
Can you find a specific vector v for which this inequality is then satisfied?

Proof. if we write the inequality explicitly:

n∑
i=1

|vi| ≤ b(

n∑
i=1

|vi|2)1/2

but now consider the Cauchy-Schwarz inequality:

(

n∑
i=1

|vi|)2 ≤ (
n∑

i=1

|vi|2)(
n∑

i=1

|1|2)

s.t we find that:

(

n∑
i=1

|vi|)2 ≤ n(

n∑
i=1

|vi|2)

from which we trivially see that b =
√
n. The inequality becomes an equality if

∀i : vi = c . ()

Theorem 2.2. Let A ∈ Hom(V, W) be a linear map between vector spaces V
and W that is bounded, i.e. the induced norm

∥A∥V,W= C < ∞.

Show that A is a continuous map between V and W.

Proof. A linear map Â ∈ Hom(V,W ) is continuous if and only if it is bounded,
i.e. if there exists a constant C such that

∥Âv∥W ≤ C∥v∥V

for all v ∈ V . Indeed if Â is bounded with constant C, then it follows that for
any ∥v − v′∥V < δϵ = ϵ/C,

∥Âv − Âv′∥W = ∥Â(v − v′)∥W ≤ C∥v − v′∥V < ϵ

so that A represents a continuous map.

Theorem 2.3. Let A ∈ Hom(Fn,Fm), i.e. A ∈ Fm×n, where furthermore on
W = Fm and V = Fn we consider the 1-norm. Consider the induced norm for
A, given by

∥A∥1,1 = sup

∥Av∥1
∥v∥1

=

∑m
i=1

∣∣∣∑n
j=1 A

i
jv

j
∣∣∣∑n

j=1 |vj |
, v ∈ Fn, ̸= 0

 .
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First prove the upper bound

∥Av∥1
∥v∥1

≤ max
j=1,...,n

m∑
i=1

∣∣Ai
j

∣∣
for all v ∈ Fn. Also show that you can find a vector v for which this inequality
is satisfied, so that this upper bound is tight. Together, these results imply that

∥A∥1,1 = max
j=1,...,n

m∑
i=1

∣∣Ai
j

∣∣ .
Proof. ∑

j

|
∑
i

Ai
jx

j | ≤
∑
j

∑
i

|Ai
jx

j | =
∑
j

∑
i

|Ai
j ||xj |

∑
j

∑
i

|Ai
j ||xj | ≤ max

j
(
∑
i

|Ai
j |)∥x∥1∑

j

|
∑
i

Ai
jx

j | ≤ max
j

(
∑
i

|Ai
j |)∥x∥1

(2)

where now dividing both sides by ∥x∥1 gives the desired result. (the first term
of these inequalities is the one norm of the result vector of Ax written explicitly.
if you are not convinced, write out for some matrix and vector and you should
see that it is indeed the same.)

Theorem 2.4. Given a submultiplicative norm on the space of linear opera-
tors Â, B̂ ∈ End(V ), i.e. a norm that satisfies ∥ÂB̂∥ ≤ ∥Â∥∥B̂∥. Show that

limn→∞

∥∥∥Ân
∥∥∥1/n = ρÂ with ρÂ the spectral radius (the magnitude of the largest

magnitude eigenvalue) of Â. This result is known as Gelfand’s formula.

Proof. submultiplicative norms satisfy ∥Ân∥ ≤ ∥Â∥n and thus ∥Â∥ < 1 implies
that limn→∞Ân → 0̂. On the other hand, from the Jordan decomposition, we
know that limn→∞Ân → 0̂ is in one-to-one correspondence with all eigenvalues
having a magnitude smaller than 1, i.e. ρÂ < 1. Now consider an operator

B̂ϵ = (ρÂ + ϵ)−1Â. It has a spectral radius ρB̂ϵ
= ρÂ(ρÂ + ϵ)−1 < 1 and thus

limn→∞(B̂ϵ)
n → 0̂ for any ϵ > 0. Hence, limn→∞∥(B̂ϵ)

n∥ → 0, and there exist

some Nϵ such that ∥(B̂ϵ)
n∥ < 1 for all n > Nϵ. Equivalently,

∥∥∥Ân
∥∥∥ <

(
ρÂ + ε

)n
or thus

∥∥∥Ân
∥∥∥1/n < ρÂ + ε for all n > Nε. Combined with ∥Ân∥1/n ≥ ρÂ, we

obtain the Gelfand formula:

limn→∞∥Ân∥1/n = ρÂ

8



Theorem 2.5. Consider the invertible linear operator Â ∈ End(V ) on the
normed vector space (V, ∥ · ∥), and consider the linear system Âx = y. Consider
a perturbed linear system Â(x + ∆x) = (y + ∆y). Show that you can bound
the relative norm of the error ∥∆x∥/ ∥x∥ in terms of the relative norm of the

perturbation ∥∆y∥/ ∥y∥ and the condition number κ(Â) = ∥Â∥
∥∥∥Â−1

∥∥∥, where

for Â ∈ End(V ) we use the induced norm. Also show that κ(Â) ≥ 1.

Proof. For a small variation or error y → y + ∆y, the solution will change tot
x → x +∆x with ∆x = Â−1∆y, which can be bound as ∥∆x∥ ≤ ∥Â−1∥∥∆y∥.
OFten, we are not interested in the absolute error, but rather relative error
∥∆x∥/∥x∥. From ∥A∥∥x∥ ≥ ∥y∥, we obtain

∥∆x∥
∥x∥

≤ ∥Â−1∥∥∆y∥
∥x∥

≤ ∥Â−1∥∥Â∥∥∆y∥
∥y∥

= κ(Â)
∥∆y∥
∥y∥

Where we have introduced the condition number κ(Â) = ∥Â−1∥∥Â∥ ≥ ∥1̂∥ ≥
1

Theorem 2.6. Given an approximate solution x̃ for the linear system Âx = y,
so that r = y − Âx̃ is not exactly the zero vector. Bound the relative error
∥x−x̃∥/∥x∥ between the exact and approximate solution in terms of the condition
number of Â and the norms of r and y

Proof.

∥x− x̃∥
∥x∥

≤ ∥Â−1∥∥r∥
∥x∥

∥Â∥∥x∥
∥y∥

= κ(Â)
∥r∥
∥y∥

Theorem 2.7. Given a vector space V with a positive definite inner product
⟨, ⟩. Prove Cauchy-Schwartz-Bunjakowski inequality

|⟨v, w⟩|2 ≤ ⟨v, v⟩⟨w,w⟩

for all v, w ∈ V

Proof.

0 ≤ ⟨av − w, av − w⟩
≤ |a|2⟨v, v⟩+ ⟨w,w⟩ − a⟨v, w⟩ − a⟨w, v⟩

≤ |⟨w, v⟩
⟨v, v⟩

|2⟨v, v⟩+ ⟨w,w⟩ − ⟨w, v⟩
⟨v, v⟩

⟨v, w⟩ − ⟨w, v⟩
⟨v, v⟩

⟨w, v⟩

≤ ⟨w,w⟩⟨v, v⟩ − |⟨v, w⟩|2

|⟨v, w⟩|2 ≤ ⟨w,w⟩⟨v, v⟩

(3)

where we let a = ⟨w,v⟩
⟨v,v⟩ and we multiplied both sides by ⟨v, v⟩
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Theorem 2.8. Given a vector space V with a positive definite inner product
⟨, ⟩, and consider a set of orthonormal vectors {ei, i = 1, . . . , n} in V (which
does not necessarily constitute a complete set). Prove Bessel’s inequality

∥v∥2 ≥
n∑

i=1

|⟨ei, v⟩|2

where we use the inner product norm ∥v∥2 = ⟨v, v⟩

Proof. Firstly we have a general vector v ∈ V , we find

0 ≤ ∥v −
n∑

i=1

aiei∥2 = ∥v∥2 +
n∑

i=1

|ai|2 −
n∑

i=1

(āi⟨ei, v⟩+ ai⟨v, ei⟩)

= ∥v∥2 +
n∑

i=1

|ai − ⟨ei, v⟩|2 −
n∑

i=1

|⟨ei, v⟩|2

now due to the basis set ei being orthonormal, we know ai = ⟨ei, v⟩ which gives
Bessel’s inequality.

Theorem 2.9. Let (V, ⟨, ⟩V ) and (W, ⟨, ⟩W ) be Euclidean/unitary spaces, and
consider a bounded linear map Â ∈ Hom(V,W ). Show that, with respect to the

induced norms on Hom(V,W ) and Hom(W,V ), we have ∥Â∥ =
∥∥∥Â†

∥∥∥. Make

sure to properly introduce or motivate your definition for the induced norm!

Proof.

∥Â∥ = sup∥v∥V =1∥Âv∥W = sup∥v∥V =1 en ∥w∥W=1|⟨w, Âv⟩|

but since |⟨w, Â†v⟩| = |⟨v, Â†w⟩| this definition also gives rise to ∥Â†∥ the equal-
ity of the second and final expression comes from cauchy-schwarz as:

⟨w, Âv⟩ ≤
√

⟨w,w⟩⟨Âv, Âv⟩

now by definition the norm of w is one, and this inequality is saturated in the
case of the supremum

Theorem 2.10. Consider a bounded linear map Â ∈ Hom(V,W ) between the
Euclidean/unitary spaces (V, ⟨, ⟩V ) and (W, ⟨, ⟩W ). Show that W = im(Â) ⊕
ker
(
Â†
)

Proof. Consider the null space of Â†: for any w ∈ ker(Â†), we find

Â†w = 0 ∈ V ⇒ ⟨Â†w, v⟩V = ⟨w, Âv⟩W = 0,∀v ∈ V
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And thus, since the second vector in the last inner product can be any vector in
im(Â), we have ker(Â†) = im(Â)⊥. As ker(Â), like any null space, is a closed
subspace, we find

W = ker(Â†)⊕ im(Â)

Theorem 2.11. Consider a bounded linear map Â ∈ Hom(V,W ) between
the Euclidean/unitary spaces (V, ⟨, ⟩V ) and (W, ⟨, ⟩W ). Using the norm asso-
ciated with these positive definite inner products, we define the distance func-
tions dW (w,w′) = ∥w − w′∥W for all w,w′ ∈ W and similarly dV (v, v′) =

∥v − v′∥V for all v, v′ ∈ V . Show that the isometry condition dW

(
Âv, Âv′

)
=∥∥∥Âv − Âv′

∥∥∥
W

= dV (v, v′) = ∥v − v′∥V for all v, v′ ∈ V requires that Â†Â = 1̂V

(necessary and sufficient condition).

Proof. if Â represents an isometric mapping with respect to the metrics dW (w′, w) =
∥w′ − w∥W and dV (v

′, v) = ∥v − v′∥V , then dW (Âv′, Âv) = dV (v
′, v) implies

⟨Âv, Âv⟩W = ⟨v, Â†Âv⟩V = ⟨v, v⟩V

This is only possible if Â†Â = 1̂v.

Theorem 2.12. Given a (bounded) linear operator Â ∈ End(V ) on a Eu-
clidean/unitary space (V, ⟨, ⟩), that is self-adjoint: Â = Â†. Let Â have an
eigenvector v with eigenvalue λ. Show that λ is real.

Proof. If (λ, v) is an eigenvalue-eigenvector pair of a self-adjoint operator Â, we
find

⟨v, Âv⟩ = ⟨v, λv⟩ = λ⟨v, v⟩ = ⟨Âv, v⟩ = ⟨λv, v⟩ = λ̄⟨v, v⟩

Since an eigenvector is not the zero vector, ⟨v, v⟩ > 0, and we thus have λ = λ̄,
this proofs λ is real.

Theorem 2.13. Given a (bounded) linear operator Â ∈ End(V ) on a Eu-

clidean/unitary space (V, ⟨, ⟩, , for which ∥Âv∥ =
∥∥∥Â†v

∥∥∥ for all v ∈ V . Show

that Â is normal, i.e. ÂÂ† = Â†Â

Proof.

∥Â∥ = ∥A†∥
⟨Âv, Âv⟩ = ⟨A†v,A†v⟩
⟨v,A†Âv⟩ = ⟨v, ÂA†v⟩

A†Â = ÂA†

(4)

11



Theorem 2.14. Given a (bounded) linear operator Â ∈ End(V ) on a Eu-
clidean/unitary space (V, ⟨, ⟩, that is normal, i.e. ÂÂ† = Â†Â. Let Â have an
eigenvector v with eigenvalue λ. Show that v is also an eigenvector of Â†. What
is the corresponding eigenvalue?

Proof. Consider an eigenvector v with eigenvalue λ of a normal operator Â.
Using this relation; we find that ∥(Â− λ)v∥ = 0 implies ∥(Â† − λ̄)v∥ = 0, i.e. v
is also an eigenvector of Â† with eigenvalue λ̄

Theorem 2.15. Given a (bounded) linear operator Â ∈ End(V ) on a Eu-
clidean/unitary space (V, ⟨, ⟩, that is normal, i.e. ÂÂ† = Â†Â. Decompose
Â = Â1 + iÂ2 where Â1 and Â2 are self-adjoint: express Â1, Â2 in terms of Â.

What can you say about
[
Â1, Â2

]
. Given an eigenvector v of Â with eigenvalue

λ. Is v also an eigenvector of Â1 and Â2 ? If so, what are the corresponding
eigenvalues? Does this result also hold if Â is not normal?

Proof. Any operator can be split into two self-adjoint parts acoording to

Â =
Â+ Â†

2
+ i

Â− Â†

2i
= Â1 + iÂ2

which could be considered as the analogue of separating a complex number
into its real and complex part. Note that this way of writing Â then implies
that Â† = Â1 − iÂ2. Imposing that Â is normal amounts to [Â1, Â2] = 0̂.
Combined with the result on eigenvectors, this implies that any eigenvector v
of Â with eigenvalue λ is also an eigenvector of Â1 and Â2 with Â1v = Re(λ)v
and Â2v = Im(λ)v note that this result hinges on the commutator being zero,
s.t this does not hold for non normal operators

Theorem 2.16. Given a (bounded) linear operator Â ∈ End(V ) on a Eu-
clidean/unitary space (V, ⟨, ⟩, that is normal, i.e. ÂÂ† = Â†Â. Show that
∥Â∥ = ρÂ, i.e. the operator norm associated with the inner product norm equals
the spectral radius.

Proof. We generally have that ∥Ân∥ ≤ ∥Â∥n. Equality is obtained if we can
also show ∥Ân∥ ≤ ∥Â∥n, for which we prove, by induction, that ∥Ânv∥ ≥ ∥Âv∥n
for any vector v ∈ V with normalisation ∥v∥ = 1. For n = 2, we have ∥Â2v∥ =
∥Â(Âv)∥ = ∥Â†Âv∥ ≥ ⟨v, Â†Âv⟩ = ∥Âv∥2 by the Cauchy-Schwarz inequality,
the inductive step then follows from

∥Ân+1v∥ = ∥Ân Âv

∥Âv∥
∥∥Âv∥ ≥ ∥Â Âv

∥Âv∥
∥n∥Âv∥ = ∥Â2v∥n∥Âv∥1−n ≥ ∥Âv∥n+1

A consequence of this result is that ρÂ = ∥Â∥.

Theorem 2.17. Given a (bounded) linear operator Â ∈ End(V ) on a Eu-
clidean/unitary space (V, ⟨, ⟩, that satisfies Â2 = 0̂. Show that Â cannot be a
normal operator.

12



Proof. Suppose Â is normal and nilpotent with indesx s = 2. For any vector
v ∈ V , we would find 0 = ∥Â2v∥ = ∥Â†Âv∥, and thus Â†Âv = o. Indeed, any
vector Âv is either the zero vector or a nonzero eigenvector of Â with eigenvalue
zero. But any eigenvector of Â with eigenvalue zero is also an eigenvector of
Â† with eigenvalue zero. But this means that ⟨v, Â†Âv⟩ = ∥Âv∥2 = 0, so that
Âv = 0 for all v ∈ V , and thus that Â = 0̂, which contradicts the assumption
that Â is nilpotent with index 2.

13



3 Unitary similarity and unitary equivalence

Theorem 3.1. Given a matrix A ∈ Fn×n. Under which condition on A is
U = exp(A) a unitary matrix?

Proof. Since we have U(t) = exp(tA) we have U(t)−1 = exp(−tA) and U(t)H =
exp(tAH), we obtain the conditions AH = −A i.e. A is an anti-Hermitian
matrix.

Theorem 3.2. Given a matrix A ∈ Rn×n that satisfies A⊤ = −A. What can
you say about det(exp(A))

Proof. We use the relation det(exp(A)) = exp(tr(A)) to find that det(exp(A)) =
1.

Theorem 3.3. Given a Householder matrix H = I − 2 vvH

vH , with v ∈ Cn

and thus H ∈ Cn×n. How should you choose v such that Hw becomes paral-
lel to e1, for a given vector w. Here, e1 is the first coordinate vector: e1 =[
1 0 0 . . . 0

]⊤
.

Proof. Given a vector w = (w1, w2, . . . , wn), we will try to make all entries wk

for k = 2, . . . , n zero by acting with H, thus moving all the ’weight’ of the vector
to the first component. We thus want

Hw = w − 2vHw

vHv
v = eiθ∥w∥e1

for some value of the phase θ, from which we observe that v will need to be a
linear combination of w and e1 : v = w + αe1.

Theorem 3.4. Consider a matrix A ∈ Cn×n that is circulant, i.e. Ai
j =

f(j−i) mod n with f0, f1, . . . , fn−1 ∈ C. Construct the eigenvectors and eigenval-
ues of A.

Proof. It can easily be seen that the columns of the Fourier matrix U diagonalise
such a matrix. When denoting columns of U as uk = (n−1/2ωkj)j=0,...,n−1 for
k = 0, . . . , n− 1, we obtain

(Auk)
i =

1√
n

n−1∑
j=0

Ai
jω

kj =
1√
n

n−1∑
j=0

f(j−1) mod nω
k(j−i+i)

=
ωki

√
n

n−1∑
j=0

f(j−1) mod nω
k(j−i) = (uk)

iλk

so that uk is an eigenvector with corresponding eigenvalue λk given by

λk =

n∑
j=1

f(j−1) mod nω
k(j−i) =

n−1∑
j=0

fjω
kj =

n−1∑
j=0

fje
−i 2π

n kj

14



Theorem 3.5. Prove that any matrix A ∈ Cn×n admits a Schur decomposition
A = ZTZH, where Z ∈ Cn×n is unitary and T ∈ Cn×n is upper triangular(
T i
j = 0 if i > j).

Proof. It is definitely valid for the case n=1, with A = T and Z = 1. Assume it
holds for all matrix in F(n−1)×(n−1) and let A ∈ Fn×n. Being a finite-dimensional
matrix, A has at least one eigenvalue λ with at least one eigenvector v, which
we can normalize to be a unit vector u = v/∥v∥. Complete {u} to be a complete
set, or equivalently, construct a unitary matrix U whose first column is u, i.e.
U i
1 = ui. We now have

AU = U

[
λ . . .

O(n−1)×1 Ã

]
⇔ A = U

[
λ . . .

O(n−1)×1 Ã

]
UH

with Ã ∈ F(n−1)×(n−1), so that it has a Schur decomposition Ã = Z̃T̃ Z̃H . We
thus find

A = U

[
1 O1×(n−1)

O(n−1)×1 Z̃

] [
λ . . .

O(n−1)×1 T̃

] [
1 O1×(n−1)

O(n−1)×1 Z̃H

]
UH

First matrix is Z, second T and last ZH , where clearly T is defined as upper
triangular and Z is unitary.

Theorem 3.6. Given a matrix A ∈ Cn×n that is normal. Show that it can be
unitarily diagonalised, i.e. A = UDUH with U ∈ Cn×n unitary and D ∈ Cn×n

diagonal
(
Di

j = 0 if i ̸= j). You can use the existence of the Schur decomposi-
tion from the previous question.

Proof. Schur decomposition of a normal matrix must satisfy THT = TTH .
Taking row i and column j of this matrix equation, we find

min(i,j)∑
k=1

T̄ k
i T

k
j =

n∑
k=min(i,j)

T i
k
¯
T j
k

Starting with for example (i, j) = (1, 1), we find |T 1
1 |2 =

∑n
k=1|T 1

k |2, which is
only possible if T 1

k = 0 for k = 2, . . . , n. Continuing along these lines, we see
that a normal matrix A must have a Schur decomposition where T is diagonal.
Hence, the Schur decomposition coincides with the eigenvalue decompostion,
and a normal matrix is unitarily diagonalisable.

Theorem 3.7. Given a matrix A ∈ Cm×n (assuming m ≥ n ) and its (thin)
QR decomposition A = QR with Q ∈ Fm×n isometric and R ∈ Fn×n upper
triangular. Relate the factors in the (thin) singular value decomposition of A
with those in the the singular value decomposition of R.

15



Proof. We see the following:

A = QR

A = UASAV
H
A

R = URSRV
H
R

UASAV
H
A = QURSRV

H
R

⇒ UA = QUR, SA = SR, VA = VR

Theorem 3.8. Given a matrix A ∈ Cn×n and its singular value decomposition
A = USV H with U,V ∈ Fn×n unitary, and S ∈ Fn×n diagonal. Construct the
unitary (!) matrix that diagonalises the hermitian matrix[

O AH

A O

]
.

Show that your answer is unitary, and that it diagonalises this matrix.

Proof. The unitary matrix that diagonalises this is:

A =
1√
2

[
U V
U −V

]
this matrix is indeed unitary, as:

AHA =
1

2

[
U V
U −V

]H [
U V
U −V

]
=

1

2

[
UH UH

V H −V H

] [
U V
U −V

]
=

1

2

[
UHU + UHU 0

0 V HV + V HV

]
= I

(5)

and that it diagonalises the matrix is a trivial calculation

Theorem 3.9. Given a matrix A ∈ Cm×n; consider the linear system Ax = y
that is potentially overdetermined. Suppose in particular that A is not full rank,
i.e. ρ(A) = p < min(m,n). Construct a solution x that minimises ∥Ax − y∥
using the standard Euclidean norm. Explain wether or not this solution unique.

Proof. For an overdetermined system Ax = y where A can be a general rect-
angular matrix and y /∈ im(A), we can write the least squares solution x that
minimises ∥Ax− y∥ using the compact singular value decomposition as

x = VpS
−1
p UH

p y = A+y

16



where we again introduced the notation A+ for the Moore-Penrose pseudoin-
verse. (A+ = (AHA)−1AH) note that this is not unique as the SVD decompo-
sition is not unique

Theorem 3.10. Given a matrix A ∈ Cm×n; we want to approximate A by
a matrix B that has at most rank r < min(m,n). Prove that the operator
norm ∥A − B∥ is minimised by choosing B = Ur Sr VH

r , the reduced singular
value decomposition obtained by retaining only the r largest singular values (and
corresponding left and right singular vectors) of A. This result is known as
the Eckhart-Young-Mirsky theorem. (There is no need to prove the equivalent
statement using the Frobenius norm.)

Proof. Any rank-r matrix B has ν(B) = n − r. Hence, the subspace spanned
by the frist r + 1 colmuns of V cannot be disjoint from ker(B) because of

dimensionality; let w =
∑r+1

i=1 aivi denoted a unit vector in this intersection,

with vi the ith column of V. Using
∑r+1

i=1 |ai|2 = 1, we find

∥A−B∥ ≥ ∥(A−B)w∥ = ∥Aw∥ = ∥SV Hw∥ = [

r+1∑
i=1

|σiai|2]1/2 ≥ σr+1

The lower bound is exactly saturated by choosing B equal to the truncated
singular value decomposition of A.

17



4 Multilinear algebra

Theorem 4.1. Consider two square matrices A1 ∈ Fm×m and A2 ∈ Fn×n

that are diagonalisable. What would be the eigenvalues and eigenvectors of the
Kronecker product A1 ⊗A2 ?

Proof.

A = A1 ⊗A2 =


(A1)

1
1A2 (A1)

1
2A2 . . . (A1)

1
n1
A2

(A1)
2
1A2 (A1)

2
2A2 . . . (A1)

2
n1
A2

...
...

. . .
...

(A1)
m1
1 A2 (A1)

m1
2 A2 . . . (A1)

m1
n1

A2


Let us observe the linear operators A1 and A2 with eigenvectors xi and yj re-
spectively. For simplicity’s sake we will look at just two eigenvectors xi and yj
with corresponding eigenvalues λi and µj :

A1xi = λixi

A2yj = µjyj

Taking (A1 ⊗A2)(xi ⊗ yj) yields:

(A1 ⊗A2)(xi ⊗ yj) = (A1xi)⊗ (A2yj)

= (λixi)⊗ (µjyj)

= λiµj(xi ⊗ yj)

Thus the eigenvalues of A1 ⊗A2 are given by: λiµj ∀1 ≤ i ≤ m, 1 ≤ j ≤ n and
its eigenvectors by: (xi ⊗ yj) ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

Theorem 4.2. Let V be an n-dimensional vector space with basis {ei, i = 1, . . . , n}.
Consider the linear operator Ŝ ∈ End(V ⊗ V ) that acts on the basis vectors as
Ŝei ⊗ ej = ej ⊗ ei. Show that Ŝ2 = 1̂V⊗V . This equation implies that Ŝ can
only have two different eigenvalues; which are those? Can you determine the
dimensionality of the associated eigenspaces (geometric multiplicity) and discuss
the structure of the associated eigenvectors.

Proof. showing Ŝ2 = 1(V⊗V ) is rather trivial, we can simply look at the action
on the basis vectors :

Ŝ2(ei ⊗ ej) = Ŝ(Ŝ(ei ⊗ ej)) = Ŝ(ej ⊗ ei) = 1̂V⊗V

now, if we consider this property and simply apply it to the eigenvalue equation
it shows us that the only possible eigenvalues are ±1 (this also follows directly
from the fact that S is a permutation operator). We know that eigenvectors
of the operator with eigenvalue one are vectors v that are structured as: (ei ⊗
ej)+(ej⊗ei) where the dimensionality is then equal to Cn

2 and the vectors with

18



eigenvalue -1 are those that are as: (ei⊗ej)− (ej ⊗ei) where the dimensionality
follows directly from the fact that the direct sum of eigenspaces must have
dimension n2
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5 Function spaces

Theorem 5.1. Let f(x) be a continuous function that is periodic with period
2π and is square integrable over a period, for example I = [0, 2π], so that it
admits a Fourier series representation f(x) = 1√

2π

∑+∞
k=−∞ F k exp(ikx). Can

you find a condition that the Fourier coefficients F k need to satisfy to ensure
that f ′(x) = df

dx (x) is also square integrable on [0, 2π].

Proof. Knowing the conditions they must satisfy is a simple case of explicitly
taking the derivative:

f(x) =
1√
2π

∞∑
−∞

F kexp(ikx)

f(x)′ = (
1√
2π

∞∑
−∞

F kexp(ikx))′

=
1√
2π

∞∑
−∞

(F kexp(ikx))′

=
1√
2π

( ∞∑
−∞

(F k)′exp(ikx) +

∞∑
−∞

F k(exp(ikx))′

)

=
1√
2π

∞∑
−∞

ikF k(exp(ikx))

(6)

s.t the following must hold if we want f’ ∈ L2: (F k)′ ∧ kF k ∈ L2

Theorem 5.2. Let f(x) be a continuous function that is periodic with period
2π and is square integrable over a period, for example I = [0, 2π], so that it
admits a Fourier series representation f(x) = 1√

2π

∑+∞
k=−∞ F k exp(ikx). Can

you express f(x) as a linear combination of sin and cos functions, namely as

f(x) = A0 +

+∞∑
k=1

Ak cos(kx) +

+∞∑
k=1

Bk sin(kx).

What is the value of the coefficients A0, Ak and Bk (for k = 1, 2, . . . ) expressed
as an integral over f(x) ?

Proof. using the euler form of complex numbers :

eikx = cos(kx) + isin(kx)
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it is rather trivial to expand and find these coefficients where A0 is simply the
case of k = 0 (duh), and Ak and Bk are defined as:

Ak =

∫ 2π

0

f(x)cos(kx)dx

Bk =

∫ 2π

0

f(x)sin(−kx)dx

(7)

where through simple symmetry arguments of odd and even functions we know
that Ak = 0 if f(x) is odd, and Bk = 0 if f(x) is even.

Theorem 5.3. Let {pn(x), n = 0, 1, 2, . . .} be a family of real-valued univariate
polynomials, where pn(x) is of degree n, that is orthogonal (⟨pn, pm⟩w = Nnδn,m)
with respect to an inner product

⟨p, q⟩w =

∫
I

w(x)p(x)q(x)dx

on the interval I (which could be finite or infinite). Prove that this family of
polynomials must satisfy a recursion relation of the form

bn+1pn+1(x) + anpn(x) + cn−1pn−1(x) = xpn(x).

Proof. Since xpn(x) is a polynomial of degree n + 1, it can be written as a
linear combination of the polynomials {1, p1(x), . . . , pn(x), pn+1(x)}. However,
given that pn(x) is orthogonal to any polynomial q of degree k ≤ n− 2, due to
the symmetry of the inner product formula∫

I

w(x)(q(x))(xpn(x))dx =

∫
I

w(x)(xq(x))pn(x)dx

Combining these two observations leads to the result that orthogonal polyno-
mials are governed by a recursion relation of the form

bn+1pn+1(x) + anpn(x) + cn−1pn1
(x) = xpn(x)

as

xpn(x) =

n+1∑
k=0

akpk(x) =

n+1∑
k=n−1

akpk(x) (8)

where the last equality follows from that orthogonality relation saying any ex-
pansion coefficient for k ≤ n− 2 is zero

Slightly clearer derivation:

Let us observe polynomials p(x) and q(x) of degree ≤ n. These are simply
linear combinations of the following form: f(x) =

∑n
i=0 αixi. Thus taking

the inner product between these two will result in 0 as they are orthogonal
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polynomials. Let’s see what happens when we take ⟨pk(x), xpn(x)⟩. This is
equal to ⟨xpk(x), pn(x)⟩. The bra side is of degree k+1 and the ket side is of
degree n, thus this inner product will equal zero when k < n − 1. We find
that the only terms surviving are those of order n-1, n and n+1 (since all other
coefficients must equal zero as ⟨pk(x), pk(x)⟩ ≠ 0). Which allows us to write
xpn(x) as:

xpn(x) = bn+1pn+1(x) + anpn(x) + cn−1pn−1(x)

Theorem 5.4. Let {pn(x), n = 0, 1, 2, . . .} be a family of real-valued univariate
polynomials, where pn(x) is of degree n, that is orthogonal (⟨pn, pm⟩w = Nnδn,m)
with respect to an inner product

⟨p, q⟩w =

∫
I

w(x)p(x)q(x)dx

on the interval I (which could be finite or infinite). Prove that pn(x) must have
exactly n distinct (and thus simple) roots in the interval I.

Proof. Let x1, x2, . . . , xm be the distinct roots of odd order of pn(x) which lie
within the interval I, with thusm ≤ n. Define q(x) = (x−x1)(x−x2) . . . (x−xm),
so that q(x)pn(x) must be a function with constant sign for all x ∈ I. This
implies that ⟨q, pn⟩ =

∫
I
w(x)q(x)pn(x)dx cannot be zero. However, if m < n,

then q is a linear combination of {p0, p1, . . . , pm} and must be orthogonal to pn.
Hence, the only possibility is that m = n, which implies that pn(x) has n simple
roots lying strictly within the interval I, and in particular cannot have complex
roots.

Theorem 5.5. The Legendre polynomials {Pn(x), n = 0, 1, 2, . . .} are defined
by the generating function

1√
1− 2tx+ t2

=

+∞∑
n=0

Pn(x)t
n

Prove that the Legendre polynomials satisfy the recursion relation

(n+ 1)Pn+1(x) + nPn−1(x) = (2n+ 1)xPn(x)

Proof. page 154 exercise (use derivative of generating function) (will type this
out soon..)

Theorem 5.6. Using the recursion relation for the Legendre polynomials Pn(x)
from the previous question, together with P0(x) = 1 and P1(x) = 1, prove that
they satisfy the Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
.

Proof. page 154 plop functions in recursion relation
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Theorem 5.7. The Hermite polynomials {Hn(x), n = 0, 1, 2, . . .} are defined by
the generating function

exp
(
2xt− t2

)
=

+∞∑
n=0

Hn(x)

n!
tn

Show that the Hermite polynomials satisfy

⟨Hn(x), Hm(x)⟩w =

∫ +∞

−∞
e−x2

Hm(x)Hn(x)dx = 2nn!
√
πδm,n

Proof. The Rodriguez representation tells us that:

Hn(x) = (−1)nex
2 dn

dxn
e−x2

Using this we can rewrite ⟨Hn(x), Hm(x)⟩ as:

⟨Hn(x), Hm(x)⟩w = (−1)n
∫ +∞

−∞
Hm(x)

dn

dxn
e−x2

dx

Let us look at the case where m ̸= n, and let us assume n > m (note that
it doesn’t matter whether you choose m > n or m < n, just substitute the
polynomial of the highest order):
Integrating by parts n times yields:

(−1)n
∫ +∞

−∞
Hm(x)

dn

dxn
e−x2

dx = (−1)2n
∫ +∞

−∞

dn

dxn
Hm(x)e−x2

dx = 0

Since Hm(x) is a polynomial of order m, taking its nth derivative will result in
0 since n > m.

Now we need to look at the case where n = m. Hermite polynomials also

possess the neat property that: dn

dxnHn(x) = 2n dn−1

dxn−1Hn−1(x) = 2nn!
After n integrations by parts we obtain:

(−1)2n
∫ +∞

−∞

dn

dxn
Hn(x)e

−x2

dx = 2nn!

∫ +∞

−∞
e−x2

dx = 2nn!
√
π

Which completes the proof.

Theorem 5.8. The Hermite polynomials {Hn(x), n = 0, 1, 2, . . .} are defined by
the generating function

exp
(
2xt− t2

)
=

+∞∑
n=0

Hn(x)

n!
tn

Show that the Hermite polynomials satisfy the recursion relation

Hn+1(x) + 2nHn−1(x) = 2xHn(x).

23



Proof. page 155 same as theorem 6.6

Theorem 5.9. Using the recursion relation from the previous question and
H0(x) = 1, H1(x) = 2x, show that the Hermite polynomial Hn(x) satisfies the
Rodrigues representation

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

Proof. page 156

Theorem 5.10. The Laguerre polynomials {Lnt(x), n = 0, 1, 2, . . .} are defined
by the generating function

1

1− t
exp

(
−x

t

1− t

)
=

+∞∑
n=0

Ln(x)t
n.

Show that the Laguerre polynomials satisfy

⟨Ln(x), Lm(x)⟩w =

∫ +∞

0

e−xLm(x)Ln(x)dx = δm,n

Proof. page 155

Theorem 5.11. The Laguerre polynomials {Ln(x), n = 0, 1, 2, . . .} are defined
by the generating function

1

1− t
exp

(
−x

t

1− t

)
=

+∞∑
n=0

Ln(x)t
n

Show that the Laguerre polynomials satisfy the recursion relation

(n+ 1)Ln+1(x) + nLn−1(x) = (2n+ 1− x)Ln(x).

Proof. page 156 same as theorem 6.5

Theorem 5.12. Using the recursion relation from the previous question and
L0(x) = 1, L1(x) = 1− x, show that the Laguerre polynomial Ln(x) satisfies the
Rodrigues representation

Ln(x) =
ex

n!

dn

dxn

(
xne−x

)
Proof. page 156 same as theorem 6.6

Theorem 5.13. The Chebyshev polynomials are given by Tn(x) = cos(n arccos(x)).
Show that they satisfy the recursion relation Tn+1(x) = 2xTn(x) − Tn−1(x).
Work out T0(x) and T1(x) and use this to show that Tn(x) is indeed a polyno-
mial of degree n.
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Proof. page 156 - 157

Theorem 5.14. The Chebyshev polynomials are given by Tnt(x) = cos(n arccos(x)).
Show that

⟨Tn, Tm⟩w =

∫ +1

−1

1√
1− x2

Tn(x)Tm(x)dx = δn,m

{
π, n = 0
π
2 , n > 0

.

Proof. page 156 - 157

Theorem 5.15. Using the recursion relation of the Chebyshev polymials from
question 13 , show that they are generated via

1− xt

1− 2xt+ t2
=

+∞∑
n=0

Tn(x)t
n.

Proof.
Tn(cos θ) = cosnθ = Re{einθ}

+∞∑
n=0

(eiθt)n =
1

1− eiθt
convergence? We’re physicists, everything converges if you wait long enough

=
1

1− eiθt
· 1− e−iθt

1− e−iθt

=
1− e−iθt

1− 2t cos θ + t2

Taking only the real part and substituting cos θ for x yields the wanted gener-
ating function.

Theorem 5.16. Given an integral operator Â ∈ End
(
L2(I)

)
that acts as

(Âf)(x) =
∫
1
A(x, y)f(y) dy. Show that Â is a bounded operator if (sufficient

condition) ∫
1

∫
1

|A(x, y)|2 dx dy < ∞.

Proof. For integral operators, we can easily show that

∥Âf∥2 =

∫
I

|
∫
I

A(x, y)f(y)dy|2dx

≤
∫
I

(∫
I

|A(x, y)f(y)dy|
)2

dx

=

∫
I

(∫
I

|A(x, y)||f(y)|dy
)2

dx

≤
∫
I

(∫
I

|A(x, y)|2dy
)(∫

I

|f(y)|2dy
)
dx

=

(∫
I

∫
I

|A(x, y)|2dydx
)
∥f∥2
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where in the first transition, we applied the Cauchy-Schwarz inequality for every
fixed value of x. Hence, a sufficient condition for Â to be bounded is that the
integral between the parentheses on the last line is finite. This integral can be
interpret as the (squared) 2-norm of the kernel A(x, y), when interpreted as a
function in L2(I × I)

Theorem 5.17. Given an integral operator Â ∈ End
(
L2(I)

)
that acts as

(Âf)(x) =
∫
1
A(x, y)f(y) dy and that is bounded (thus satisfying the condi-

tion from the previous question). Can you impose a (sufficient) condition on
the kernel A(x, y) so that Â is a symmetric operator. Is it then also self-adjoint?

Proof. Writing the inner product explicitly:

⟨Âf, f⟩ =
∫ ∫

A(x, y)f(y)f(x)dydx

=

∫ ∫
f(y)[A(x, y)f(x)]dydx

(9)

imposing A to be symmetric is then equivalent to the following condition:∫
A(x, y)dy =

∫
A(x, y)dx

which is equivalent to saying:

A(x, y) = A(y, x)

This operator is then also self adjoint as they have the same domain

Theorem 5.18. Given two operators Â, B̂ End (H) on some infinite-dimensional
(separable) Hilbert space H. Show that, if [Â, B̂] = ÂB̂−B̂Â acts as the identity
(on vectors that lie within its domain), then it is impossible for both operators
Â and B̂ to have a finite operator norm.

Proof. if ÂB̂ − B̂Â = 1̂, implies that

ÂB̂n − B̂nÂ = nB̂n−1

However, because of subaddititvity and submultiplicativity of the operator norm,
we find

n∥B̂n−1∥ ≤ ∥ÂB̂n∥+ ∥B̂nÂ∥ ≤ 2∥Â∥∥B̂n∥ ≤ 2∥Â∥∥B̂∥∥B̂n−1∥

from which we obtain n ≤ 2∥Â∥∥B̂∥. As this must hold for any n, it is clearly
inconsistent with the assumption that both operators are bounded.

Theorem 5.19. On the Hilbert space of (equivalence classes of) square in-
tegrable functions L2(I) (with standard inner product) on a compact interval
I = [a, b], consider the operator P̂ with action (Pf)(x) = −if ′(x) and domain
DP̂ =

{
f ∈ L2(I) | f ′ ∈ L2(I), f(a) = f(b) = 0}. Is this operator symmetric?

Is it self-adjoint?
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Proof. page 165

Theorem 5.20. On the Hilbert space of (equivalence classes of) square in-
tegrable functions L2(I) (with standard inner product) on a compact interval
I = [a, b], consider the operator P̂ action (P̂ f)(x) = −if ′(x) and domain
Dp̂ =

{
f ∈ L2(I) | f ′ ∈ L2(I), f(a) = −f(b)}. Is this operator symmetric? Is

it self-adjoint?

Proof. page 165

Theorem 5.21. On the Hilbert space of (equivalence classes of) square in-
tegrable functions L2(I) (with standard inner product) on a compact interval
I = [a, b], consider the operator P̂ with action (P̂ f)(x) = −if ′(x) and domain
Dp̂ =

{
f ∈ L2(I) | f ′ ∈ L2(I), f(a) = 2f(b)}. Is this operator symmetric? Is it

self-adjoint?

Proof. page 165

Theorem 5.22. On the Hilbert space of (equivalence classes of) square in-
tegrable functions L2(I) (with standard inner product) on a compact interval
I = [−a,+a], consider the operator Â with action (Âf)(x) =

(
x2 − 1

)
f(x)

and domain DÂ = L2(I). Is this operator symmetric? Is it self-adjoint? Can

you guess what the (discrete, continuous and residual) spectrum of Â is; try to
explain or motivate your answer (in words)?

Proof. exercise
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6 Fourier calculus and distributions

Theorem 6.1. Let the Fourier transform of a function f(x) ∈ L1(R) be given
by

f̂(ξ) =

∫ +∞

−∞
f(x)e−i2πξx dx.

Prove that, for g(x) = f(x)e−i2πax, it holds that ĝ(ξ) = f̂(ξ + a).

Proof.

ĝ(ξ) =

∫ +∞

−∞
g(x)e−i2πξx dx

=

∫ +∞

−∞
f(x)e−i2πxae−i2πξx dx

=

∫ +∞

−∞
f(x)e−i2π(ξ+a)x dx

= f̂(ξ + a)

(10)

Theorem 6.2. Let the Fourier transform of a function f(x) ∈ L1(R) be given
by

f̂(ξ) =

∫ +∞

−∞
f(x)e−i2πξx dx.

Prove that, for g(x) = f(x− a), it holds that ĝ(ξ) = f̂(ξ)e−i2πaξ.

Proof.

ĝ(ξ) =

∫ +∞

−∞
g(x)e−i2πξx dx

=

∫ +∞

−∞
f(x− a)e−i2πξx dx

=

∫ +∞

−∞
f(u)e−i2πξ(u+a) du

=

∫ +∞

−∞
f(u)e−i2πξue−i2πξa du

= f̂(ξ̄)e−i2πaξ

(11)

Theorem 6.3. Let the Fourier transform of a function f(x) ∈ L1(R) be given
by

f̂(ξ) =

∫ +∞

−∞
f(x)e−i2πξ˜x dx.
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Prove that, for g(x) = f(−x), it holds that ĝ(ξ) = f̂(ξ).

Proof.

ĝ(ξ) =

∫ +∞

−∞
g(x)e−i2πξx dx

=

∫ +∞

−∞
f(−x)e−i2πξx dx

=

∫ +∞

−∞
f(−x)e−i2πξ(−x) dx

= f̂(ξ̄)

(12)

Theorem 6.4. Let the Fourier transform of a function f(x) ∈ L1(R) be given
by

f̂(ξ) =

∫ +∞

−∞
f(x)e−i2πξ˜x dx.

Prove that, for g(x) = f(x/a), it holds that ĝ(ξ) = |a|f̂(aξ̄).

Proof. we shall consider two cases, a > 0 and a < 0 (note a = 0 is trivial)

ĝ(ξ) =

∫ +∞

−∞
g(x)e−i2πξx dx

=

∫ +∞

−∞
f(x/a)e−i2πξx dx

a > 0

= a

∫ +∞

−∞
f(u)e−i2πξau du

= |a|f̂(aξ)
a < 0

= a

∫ −∞

+∞
f(u)e−i2πξau du

= |a|
∫ +∞

−∞
f(u)e−i2πξau du

= |a|f̂(aξ)

(13)

where we note the swapping of the boundaries if a < 0 when we apply the
absolute value, these boundaries swap again thus delivering the desired result
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Theorem 6.5. Let the Fourier transform of a function f(t) ∈ L1(R) be given
by

f̃(ω) =
1√
2π

∫ +∞

−∞
f(t)e+iωt dt.

Prove that, for h(t) = (f ∗ g)(t) =
∫ +∞
−∞ f(s)g(s − t) ds with f, g ∈ L1(R), it

holds that h̃(ω) =
√
2πf̃(ω)g̃(ω).

Proof. h = f ∗ g = g ∗ f :

h(x) = (f ∗ g)(x) =
∫ +∞

−∞
f(x− y)g(y)dy =

∫ +∞

−∞
f(y)g(x− y)dy

It is easy to show that h ∈ L1(R). We now obtain the convolution theorem:

ĥ(ζ) =

∫ +∞

−∞
dxe−i2πζx

∫ +∞

−∞
dyf(x− y)g(y)

=

∫ +∞

−∞
dy(

∫ +∞

−∞
dxe−i2πζ(x−y)f(x− y))g(y)e−i2πζy

= f̂(ζ)ĝ(ζ)

Due to fourier conventions, can the factor change (here it is 1).

Theorem 6.6. Let the Fourier transform of a function f(t) ∈ L1(R) be given
by

f̃(ω) =
1√
2π

∫ +∞

−∞
f(t)e+iωt dt.

What is the Fourier transform g̃(ω) of the function g(t) = f ′(t) with f ∈ L1(R)
such that also f ′ ∈ L1(R) ?

Proof. g = f ′ ∈ L1(R), we find:

ĝ(ω) =
1√
2π

∫ +∞

−∞
f ′(t)eiωtdt

=
1√
2π

[f(t)eiωt]x=+∞
x=−∞ − iω

∫ +∞

−∞
f(t)eiωtdt

= − 1√
2π

iωf̂(ω)

Theorem 6.7. Let the (Plancherel)-Fourier transform of a function f(x) ∈
L1(R) ∩ L2(R) be given by

f̂(ξ) = (F̂ f)(ξ) =

∫ +∞

−∞
f(x)e−i2πξxdx.

30



What does the Parseval relation
∫ +∞
−∞ |f̂(ξ)|2dξ =

∫ +∞
−∞ |f(x)|2 dx tell you about

the nature of the Plancheral-Fourier operator F̂ ?

Proof. The Parseval relation says that |f∥2 = ∥F̂ (f)∥2. This says that the
Fourier transform operator an isometric linear operator is. Which immediately
implies that we habe the general Parseval relation:

⟨f, g⟩ = ⟨F̂ (f), F̂ (g)⟩ = ⟨f̂ , ĝ⟩

Theorem 6.8. Let Ha[φ] =
∫ +∞
a

φ(x)dx be the (shifted) Heaviside distribution.
Show that the distributional derivative H ′

a = δa, with δa[φ] = φ(a) the shifted
Dirac distribution.

Proof.

H ′[φ] = −
∫ +∞

a

φ′(x)dx = φ(a) = δ[φ]

where, using partial integration of the functions 1, and φ we achieve the desired
result as φ(∞) = 0 and the derivative of a constant function is also zero st the
second integral vanishes

Theorem 6.9. Using the result from the previous question, and the fact that
the distributional derivative of the regular distribution Tf associated to f(x) =
log(|x|) is the Cauchy principle value T ′

f = Pv 1
x , prove the Sokhotsky-Plemelj

formula

lim
s→0†

1

x± is
= Pv

1

x
∓ iπδ(x)

Proof. Consider the principal branch of the logarithm function. This function
is defined for all z =∈ C\R ̸=0, or thus, for z = reiϕ with r = |z| ∈ [0,+∞) and
ϕ = arg(z) = arctan( sx ) ∈ (−π,+π) and act as

log(z) = log(r) + iϕ = log
(√

x2 + s2
)
+ i arctan

( s
x

)
Note that:

lim
s→0+

arctan
( s
x

)
=

{
0 x > 0

π x < 0
= πH(−x) (14)

lim
s→0+

log
(√

x2 + s2
)
= log|x| (15)

we then find

lim
s→0+

log(x± is) = log|x| ± iπH(−x)
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Thus taking the distributional derivative yields:

lim
s→0+

1

x± is
= Pv

1

x
∓ iπδ(x)

This result is known as the Sokhotski-Plemelj theorem

Theorem 6.10. Use this result to show that the distributional Fourier trans-
form Ĥ of the Heaviside distribution H[φ] =

∫ +∞
0

φ(x)dx is given by

Ĥ(ξ) = − i

2π
Pv

1

ξ
+

1

2
δ(ξ).

Proof. H(x) = lims→0+ e−sxH(x), we find:

Ĥ(ξ) = lim
s→0+

∫ +∞

−∞
e−sxH(x)e−i2πξxdx

= lim
s→0+

∫ +∞

0

e−(s+i2πξ)xdx

= lim
s→0+

1

s+ i2πξ

= −i lim
s→0+

1

2πξ − is

= − i

2π
Pv

1

ξ
+

1

2
δ(ξ)

(16)
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7 Applications of Linear Differential Operators

Theorem 7.1. Consider the second order linear differential operator L̂ that
acts as

(L̂f)(x) = a2(x)
d2f

dx2
(x) + a1(x)

df

dx
(x) + a0(x)f(x).

Define the action of the formal adjoint L̂†with respect to the standard L2(R)
inner product ⟨f, g⟩ =

∫ +∞
−∞ g(x)f(x)dx and show that

j(x) = ḡ(x)(L̂f)(x)−
(
L̂†g

)
(x)f(x)

equals a total derivative, i.e. j(x) = d
dxJ(g(x), f(x)), where you define what

J(g(x), f(x)) is.

Proof. We define the formal adjoint as

L̂† =

p∑
j=0

(−1)jD̂jaj(x̂)

or thus

(L̂†v)(x) =

p∑
j=0

(−1)j
dj

dxj
(aj(x)v(x))

Consider the following equality

d

dx
[

j−1∑
k=0

(−1)k(
dk

dxk
v(x))(

dj−1−k

dxj−1−k
u(x))] = v(x)

dju

dxj
(x)− (−1)ju(x)

djv

dxj
(x)

which follows by applying the Leibniz (read: product) rule and canceling the
contribution where the additional derivative acts on v(x) in the term j with the
contribution where the additional derivative acts on u(x) in the term (j+1). If
we substitute v(x) → ak(x)v̄(x) and sum for k from 0 to p, we find the Lagrange
identity

v(x)(L̂u)(x)− (L̂†v)(x)u(x) =
d

dx
J(u(x), v(x))

where we have defined the bilinear concomitant (it actually is sesquilinear (fuck-
ing chad jutho))

J(u(x), v(x)) =

p∑
j=0

j−1∑
k=0

(−1)k(
dk

dxk
[aj(x)v(x)])(

dj−1−k

dxj−1−k
u(x))
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Theorem 7.2. Repeat the previous question with respect to a weighted inner
product ⟨f, g⟩w =

∫ +∞
−∞ w(x)g(x)f(x)dx. Under which conditions on a2(x), a1(x)

and a0(x) (which you can assume to be real-valued) is L̂ formally self-adjoint?

Proof. The formal adjoint of the derivative is given by

(D̂†v)(x) = − 1

w(x)

d

dx
[w(x)v(x)]

We also need to change the Lagrange identity to

w(x)v(x)(L̂†u)(x)− w(x)(L̂†v)(x)u(x) =
d

dx
J(u(x), v(x))

with bilinear concomitant now given by

J(u(x), v(x)) =

p∑
j=0

j−1∑
k=0

(
dk

dxk
[w(x)ak(x)v(x)](

dj−1−k

dxj−1−k
u(x))

Theorem 7.3. Consider the second order differential operator L̂ = −D̂2, i.e.
(L̂f)(x) = f ′′(x) with a domain DL =

{
f ∈ L2([a, b]) | f ′′ ∈ L2([a, b]), f(a) = f(b), f ′(a) = 0

}
.

What is the action and domain of the adjoint L̂†. Is L̂ self-adjoint with these
boundary conditions?

Proof. Starting with the formal adjoint, we find its action to be

L̂† = −D̂2

now using the (not so bilinear) bilinear concomitant to find the boundary con-
ditions for L̂†, we find:

[g(b)
∂

∂x
(f(b))− ∂

∂x
(g(b))f(b)]− [g(a)

∂

∂x
(f(a))− ∂

∂x
(g(a))f(a)] = 0

now using the boundary conditions in DL all terms are zero if we impose fol-
lowing(boundary) conditions in DL† :

DL† =
{
g ∈ L2(I) | g′′(x) ∈ L2(I), g′ ∈ L2(I) ∧ g(b) = 0

}
from which we see that L is not self-adjoint but it is symmetric.

Theorem 7.4. Consider the Sturm-Liouville operator (L̂u)(x) = d
dx

(
p(x) d

dxu(x)
)
+

q(x)u(x). Show that it is self-adjoint with respect to the standard inner product
on L2([a, b]) if using the separated boundary conditions f(a) + αf ′(a) = 0 and
f(b) + βf ′(b) = 0 where α, β ∈ R.

Proof. page 210 under 7.32, it can be verified that these conditions on u imply
the same conditions on v in order to have a vanishing boundary term, so that
L̂ then becomes self-adjoint.
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Theorem 7.5. Consider the first order vector-valued homogeneous differential
equation

dz

dt
(t) = A(t)z(t)

with z(t) ∈ Fn and A(t) ∈ Fn×n. Let Z(t) be a fundamental solution matrix,
i.e. for every t, Z(t) ∈ Fn×n such that

dZ

dt
(t) = A(t)Z(t)

with furthermore det(Z(t)) ̸= 0, so that the column of Z(t) represent n linearly
independent solutions. Let Z̄(t) be another fundamental solution matrix; show
that there exists a constant matrix C ∈ Fn×n such that Z̄(t) = Z(t)C.

Proof. Which follows from

dC

dt
=

d

dt
[Z−1(t)Z̃(t)] = −Z−1(t)

dZ

dt
(t)Z−1(t)Z̃(t) + Z−1(t)

dZ̃

dt
(t)

= −Z−1(t)A(t)Z̃(t) + Z−1(t)A(t)Z̃(t) = 0

where the first term comes from the fact that:

∂ZZ−1

∂t
=

∂Z

∂t
Z−1 + Z

∂Z−1

∂t
= 0

Theorem 7.6. Consider the first order vector-valued homogeneous differential
equation

dz

dt
(t) = A(t)z(t)

with z(t) ∈ Fn and A(t) ∈ Fn×n, where furthermore A(t) is a periodic function
of time, i.e. A(t) = A(t + T ) for some period T . Let Z(t) be a fundamental
solution matrix as defined in the previous question. Show Floquet’s theorem,
namely that Z(t) can be expressed as

Z(t) = Q(t) exp(Bt)

where Q(t) is also periodic with period T and B is a constant matrix. You can
use the result from the previous question.

Proof. If Z(t) is a fundamental solution matrix, then so is Z̃(t) = Z(t+ T ), as
it satisfies

dZ̃(t)

dt
=

d

dt
Z(t+ T ) = A(t+ T )Z(t+ T ) = A(t)Z̃(t)

Hence, there exists a constant matrix C such that Z(t+T ) = Z(t)C; it is given
by

C = Z(t)−1Z(t+ T )
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and known as the monodromy matrix. With C being invertible, it has a (non-
unique) logarithm, from which we define B = 1

T logC so that C = eTB . If we
now define Q(t) = Z(t)e−tB then we find

Q(t+ T ) = Z(t+ T )e−(t+T )B = Z(t)Ce−TBe−tB = Q(t)

Hence, any fundamental solution matrix take the form Z(t) = Q(t)etB with Q
periodic with period T.

Theorem 7.7. Consider the second order scalar-valued homogeneous differen-
tial equation

a2(t)ü(t) + a1(t)u̇(t) + a0(t)u(t) = 0

and consider two solutions u(t) and v(t). Define the Wronskian

W (t) = det

([
u(t) v(t)
u̇(t) v̇(t)

])
Prove Abel’s formula W (t) = W (t0) exp

(
−
∫ t

t0
a1(τ)/a2(τ)dτ

)
.

Proof. If we have two solutions u(t) and v(t), we find W (t) = u(t)v̈(t)− u̇(t)v(t)
and thus

Ẇ (t) = u(t)v̈(t)− ü(t)v(t) = −a1(t)

a2(t)
(u(t)v̇(t)− u̇(t)v(t)) = −a1(t)

a2(t)
W (t)

−a1

a2
is bounded and integrable , s.t:

V (t) = W (t)exp(

∫ t

t0

a1(τ)

a2(τ)
dτ)

is well defined, if we now differentiate both sides, and use our known expression
for the time derivative of W(x):

V̇ (t) = Ẇ (t)−W (t)
a1
a2

exp(

∫ t

t0

a1(τ)

a2(τ)
dτ) = 0

V is thus constant, and V (t0) = W (t0) = V (t) s.t solving the definiton of V(t)
for W gives abel’s formula

Theorem 7.8. Consider the first order vector valued initial value problem

dz

dt
(t) = A(t)z(t) + b(t), z(0) = ξ.

Let Z (t, t0) the principal fundamental solution of the homogeneous differen-
tial equation, i.e. for every t0, Z (t, t0) is the fundamental solution matrix
(thus satisfying d

dtZ (t, t0) = A(t)Z (t, t0)
)
which satisfies the specific condition

Z (t0, t0) = I. Verify that the solution to the initial value problem is given by

z(t) = Z(t, 0)ζ +

∫ t

0

Z(t, s)b(s)ds
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Proof. page 219, maybe a little before this as well but idk

z(t) = Z(t, t0)ζ +

+∞∑
n=0

∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtn

∫ tn

t0

dτA(t1)A(t2) . . . A(tn)bτ

= Z(t, t0)ζ +

∫ t

t0

dτ

+∞∑
n=0

∫ t

τ

dt1

∫ t1

τ

dt2· · ·
∫ tn−1

t0

dtnA(t1)A(t2) . . . A(tn)bτ

= Z(t, t0)ζ +

∫ t

t0

Z(t, τ)b(τ)dτ

Theorem 7.9. Given a second order linear differential operator L̂ that acts as

(L̂u)(x) = a2(x)
d2u

dx2
(x) + a1(x)

du

dx
(x) + a0(x)u(x)

Consider the homogeneous differential equation (L̂u)(x) = 0 with separated ho-
mogeneous boundary conditions u(a)+αu′(a) = 0 and u(b)+βu′(b) = 0. Explain
why the solution space of this completely homogeneous boundary value problem
can be at most one-dimensional.

Proof. For separated boundary conditions, the solution space can at most be
one-dimensional. If the two linearly independent fundamental solutions u1

and u2 would both satisfy B1[u1] = 0 and B1[u2] = 0, then both vectors
[u1(a), u

′
1(a)]

T and [u2(a)u
′
2(a)]

T would be in the kernel of a two-dimensional
linear form, which is one-dimensional. Hence, both vectors would be linearly
dependent, which is in violation with u1 and u2 being linearly independent solu-
tions, as this requires that at any point x, the Wronskian W (x) = u1(x)u

′
2(x)−

u2(x)u
′
1(x) ̸= 0.

Theorem 7.10. Given a second order linear differential operator L̂ that acts
as

(Lu)(x) = a2(x)
d2u

dx2
(x) + a1(x)

du

dx
(x) + a0(x)u(x).

Consider the inhomogeneous differential equation (L̂u)(x) = f(x) with sepa-
rated homogeneous boundary conditions u(a) + αu′(a) = 0 and u(b) + βu′(b) =
0. Let ua(x) and ub(x) be solutions of the homogeneous differential equation(
L̂ua

)
(x) = Assume that ua(x) and ub(x) are linearly independent solutions,

so that

W (x) = det

([
ua(x) ub(x)
u′
a(x) u′

b(x)

])
̸= 0.

Show that uf (x) =
∫ b

a
g(x, y)f(y) dy with

g(x, y) =

{
ua(x)ub(y)
u2(y)W (y) , a < x < y
ua(y)ub(x)
a2(y)W (y) , y < x < b

=
ua(min(x, y))ub(max(x, y))

a2(y)W (y)
.
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is a particular solution to the inhomogeneous differential equation with homoge-
neous boundary conditions.

Proof. We can construct the fundamental solution u1(x) such that it satisfies the
left boundary condition B1[u1] = α1u1(a) + α2u

′
1(a) = 0, namely by choosing

u1(a) = α2 and u′
1(a) = −α1 as initial conditions. We similarly construct the

second fundamental solutions u2 such that B2[u2] = β1u2(b) + β2u
′
2(b) = 0,

namely by choosing u2(b) = β2 and u′
2(b) = −β1 as ’initial condition’ and

integerating to the left we can then set

g(x, y) = H(y − x)c(y)u1(x) +H(x− y)d(y)u2(x)

and find

d(y)u2(y)− c(y)u1(y) = 0

d(y)u′
2(y)− c(y)u′

1(y) =
1

a2(y)

the solution can be written using the WronskianW (y) = u1(y)u
′
2(y)−u′

1(y)u2(y)
with g(x,y) the given function.
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